933 resultados para cooperative cache
Resumo:
Agricultural cooperatives in China, known as Farmers' Professional Cooperatives (FPCs), are becoming popular and have been intensely promoted by the Chinese government to improve the economic welfare of small farmers. However, very few studies on Chinese agricultural cooperatives have measured the benefits to farmers who participate in FPCs after controlling for time-invariant attributes of farmers. This paper investigates the treatment effect of participation in a rice-producing cooperative in suburban China using propensity score matching (PSM) and difference-in-differences (DID) method. Estimated results show that no significant difference is observed between participants and non-participants of the cooperative in terms of net income from rice production when controlling for the difference in farmers' rice incomes before the treatment. In addition, there is no significant heterogeneity of the treatment effects between large and small farmers, although the probability of participation in the cooperative is significantly higher when the size of cultivated rice farmland is greater. These results indicate that the benefits of the cooperative appear to be overestimated considering the vigorous policy supports for FPCs from the Chinese government.
Resumo:
The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.
Resumo:
The complexity in the execution of cooperative tasks is high due to the fact that a robot team requires movement coordination at the beginning of the mission and continuous coordination during the execution of the task. A variety of techniques have been proposed to give a solution to this problem assuming standard mobile robots. This work focuses on presenting the execution of a cooperative task by a modular robot team. The complexity of the task execution increases due to the fact that each robot is composed of modules which have to be coordinated in a proper way to successfully work. A combined tight and loose cooperation strategy is presented and a bar-pushing example is used as a cooperative task to show the performance of this type of system.
Resumo:
Nonparametric belief propagation (NBP) is a well-known particle-based method for distributed inference in wireless networks. NBP has a large number of applications, including cooperative localization. However, in loopy networks NBP suffers from similar problems as standard BP, such as over-confident beliefs and possible nonconvergence. Tree-reweighted NBP (TRW-NBP) can mitigate these problems, but does not easily lead to a distributed implementation due to the non-local nature of the required so-called edge appearance probabilities. In this paper, we propose a variation of TRWNBP, suitable for cooperative localization in wireless networks. Our algorithm uses a fixed edge appearance probability for every edge, and can outperform standard NBP in dense wireless networks.
Resumo:
This article presents a cartographic system to facilitate cooperative manoeuvres among autonomous vehicles in a well-known environment. The main objective is to design an extended cartographic system to help in the navigation of autonomous vehicles. This system has to allow the vehicles not only to access the reference points needed for navigation, but also noticeable information such as the location and type of traffic signals, the proximity to a crossing, the streets en route, etc. To do this, a hierarchical representation of the information has been chosen, where the information has been stored in two levels. The lower level contains the archives with the Universal Traverse Mercator (UTM) coordinates of the points that define the reference segments to follow. The upper level contains a directed graph with the relational database in which streets, crossings, roundabouts and other points of interest are represented. Using this new system it is possible to know when the vehicle approaches a crossing, what other paths arrive at that crossing, and, should there be other vehicles circulating on those paths and arriving at the crossing, which one has the highest priority. The data obtained from the cartographic system is used by the autonomous vehicles for cooperative manoeuvres.
Resumo:
An approximate analytic model of a shared memory multiprocessor with a Cache Only Memory Architecture (COMA), the busbased Data Difussion Machine (DDM), is presented and validated. It describes the timing and interference in the system as a function of the hardware, the protocols, the topology and the workload. Model results have been compared to results from an independent simulator. The comparison shows good model accuracy specially for non-saturated systems, where the errors in response times and device utilizations are independent of the number of processors and remain below 10% in 90% of the simulations. Therefore, the model can be used as an average performance prediction tool that avoids expensive simulations in the design of systems with many processors.
Resumo:
A number of methods for cooperative localization has been proposed, but most of them provide only location estimate, without associated uncertainty. On the other hand, nonparametric belief propagation (NBP), which provides approximated posterior distributions of the location estimates, is expensive mostly because of the transmission of the particles. In this paper, we propose a novel approach to reduce communication overhead for cooperative positioning using NBP. It is based on: i) communication of the beliefs (instead of the messages), ii) approximation of the belief with Gaussian mixture of very few components, and iii) censoring. According to our simulations results, these modifications reduce significantly communication overhead while providing the estimates almost as accurate as the transmission of the particles.
Resumo:
The aim of this study is to evaluate the effects obtained after applying two active learning methodologies (cooperative learning and project based learning) to the achievement of the competence problem solving. This study was carried out at the Technical University of Madrid, where these methodologies were applied to two Operating Systems courses. The first hypothesis tested was whether the implementation of active learning methodologies favours the achievement of ?problem solving?. The second hypothesis was focused on testing if students with higher rates in problem solving competence obtain better results in their academic performance. The results indicated that active learning methodologies do not produce any significant change in the generic competence ?problem solving? during the period analysed. Concerning this, we consider that students should work with these methodologies for a longer period, besides having a specific training. Nevertheless, a close correlation between problem solving self appraisal and academic performance has been detected.
Resumo:
We introduce a diffusion-based algorithm in which multiple agents cooperate to predict a common and global statevalue function by sharing local estimates and local gradient information among neighbors. Our algorithm is a fully distributed implementation of the gradient temporal difference with linear function approximation, to make it applicable to multiagent settings. Simulations illustrate the benefit of cooperation in learning, as made possible by the proposed algorithm.
Resumo:
The first level data cache un modern processors has become a major consumer of energy due to its increasing size and high frequency access rate. In order to reduce this high energy con sumption, we propose in this paper a straightforward filtering technique based on a highly accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction will obtain its corresponding data via forwarding from the load-store structure -thus avoiding the data cache access - or if it will be provided by the data cache. This mechanism manages to reduce the data cache energy consumption by an average of 21.5% with a negligible performance penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy consumption too by disabling a portin of sets of the L2 associative cache. Overall, when merging both proposals, the combined L1 and L2 total energy consumption is reduced by an average of 29.2% with a performance penalty of just 0.25%. Keywords: Energy consumption; filtering; forwarding predictor; cache hierarchy
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.
Resumo:
Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not use smoothing or just apply it o ine. Therefore, in this article, we propose more flexible and effcient variants of NBP for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method.
Resumo:
Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.