956 resultados para Substrate patterning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interspecific interactions are major structuring forces in marine littoral communities; however, it is unclear which of these interactions are exhibited by many key-component species. Gut content analysis showed that the ubiquitous rocky/cobble shore amphipod Echinogammarus marinas, often ascribed as a mesograzer, consumes both algae and macroinvertebrates. Further, laboratory experiments showed that E. marinus is an active predator of such macroinvertebrates, killing and consuming the isopod Jaera nordmanni and the oligochaete Tubificoides benedii. Predatory impacts of E. marinus were not alleviated by the presence of alternative food in the form of alga discs. However, in the presence of prey, consumption of alga by E. marinus was significantly reduced. Further, survival of prey was significantly higher when substrate was provided, but predation remained significant and did not decline with further increases in substrate heterogeneity. We conclude that such amphipods can have pervasive predatory impacts on a range of species, with implications for community structure, diversity and functioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The losses within the substrate of an RF IC can have significant effect on performance in a mixed signal application. in order to model substrate coupling accurately, it is represented by an RC network to account for both resistive and dielectric losses at high frequency (> 1 GHz). A small-signal equivalent circuit model of an RF IC inclusive of substrate parasitic effect is analysed in terms of its y-parameters and an extraction procedure for substrate parameters has been developed. By coupling the extracted substrate parameters along with extrinsic resistances associated with gate, source and drain, a standard BSIM3 model has been extended for RF applications. The new model exhibits a significant improvement in prediction of output reflection coefficient S-22 in the frequency range from 1 to 10 GHz in device mode of operation and for a low noise amplifier (LNA) at 2.4 GHz. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cellular imaging system, optimized for unstained cells seeded onto a thin substrate, is under development. This system will be a component of the endstation for the microbeam cell-irradiation facility at the University of Surrey. Previous irradiation experiments at the Gray Cancer Institute (GCI) have used Mylar film to support the cells [Folkard, M., Prise, K., Schettino, G., Shao, C., Gilchrist, S., Vojnovic, B., 2005. New insights into the cellular response to radiation using microbeams. Nucl. Instrum. Methods B 231, 189-194]. Although suitable for fluorescence microscopy, the Mylar often creates excessive optical noise when used with non-fluorescent microscopy. A variety of substrates are being investigated to provide appropriate optical clarity, cell adhesion, and radiation attenuation. This paper reports on our investigations to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is poorly understood. A member of the major facilitator superfamily is the glycerol-3-phosphate (G3P) transporter (GlpT) from the Escherichia coli inner membrane. GlpT is an antiporter that transports G3P into the cell in exchange for inorganic phosphate (Pi). By combining large-scale molecular-dynamics simulations, mutagenesis, substrate-binding affinity, and transport activity assays on GlpT, we were able to identify key amino acid residues that confer substrate specificity upon this protein. Our studies suggest that only a few amino acid residues that line the transporter lumen act as specificity determinants. Whereas R45, K80, H165, and, to a lesser extent Y38, Y42, and Y76 contribute to recognition of both free Pi and the phosphate moiety of G3P, the residues N162, Y266, and Y393 function in recognition of only the glycerol moiety of G3P. It is the latter interactions that give the transporter a higher affinity to G3P over Pi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The artificial magnetic conductor (AMC) and electromagnetic band gap (EBG) characteristics of planar periodic metallic arrays printed on grounded dielectric substrate are investigated. The currents induced on the arrays are presented for the first time and their study reveals two distinct resonance phenomena associated with these surfaces. A new technique is presented to tailor the spectral position of the AMC operation and the EBG. Square patch arrays with fixed element size and variable periodicities are employed as working examples to demonstrate the dependence of the spectral AMC and EBG characteristics on array parameters. It is revealed that as the array periodicity is increased, the AMC frequency is increased, while the EBG frequency is reduced. This is shown to occur due to the different nature of the resonance phenomena and the associated underlying physical mechanisms that produce the two effects. The effect of substrate thickness is also investigated. Full wave method of moments (MoM) has been employed for the derivation of the reflection characteristics, the currents and the dispersion relations. A uniplanar array with simultaneous AMC and EBG operation is demonstrated theoretically and experimentally.