919 resultados para Saxs-dsc
Resumo:
Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength
Resumo:
Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.
Resumo:
Composites based on PEEK + PTFE + CARBON FIBER + Graphite (G_CFRP) has increased application in the top industries, as Aerospace, Aeronautical, Petroleum, Biomedical, Mechanical and Electronics Engineering challenges. A commercially available G_CFRP was warmed up to three different levels of thermal energy to identify the main damage mechanisms and some evidences for their intrinsic transitions. An experimental test rig for systematize a heat flux was developed in this dissertation, based on the Joule Effect. It was built using an isothermal container, an internal heat source and a real-time measurement system for test a sample by time. A standard conical-cylindrical tip was inserted into a soldering iron, commercially available and identified by three different levels of nominal electrical power, 40W (manufacturer A), 40W (manufacturer B), 100W and 150W, selected after screening tests: these power levels for the heat source, after one hour of heating and one hour of cooling in situ, carried out three different zones of degradation in the composite surface. The bench was instrumented with twelve thermocouples, a wattmeter and a video camera. The twelve specimens tested suffered different degradation mechanisms, analyzed by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry) techniques, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Rays (EDX) Analysis. Before and after each testing, it was measured the hardness of the sample by HRM (Hardness Rockwell M). Excellent correlations (R2=1) were obtained in the plots of the evaporated area after one hour of heating and one hour of cooling in situ versus (1) the respective power of heat source and (2) the central temperature of the sample. However, as resulting of the differential degradation of G_CFRP and their anisotropy, confirmed by their variable thermal properties, viscoelastic and plastic properties, there were both linear and non-linear behaviour between the temperature field and Rockwell M hardness measured in the radial and circumferential directions of the samples. Some morphological features of the damaged zones are presented and discussed, as, for example, the crazing and skeletonization mechanism of G_CFRP
Resumo:
This work presents the incorporation of an industrial polymeric waste into a petroleum asphalt cement with penetration grade 50-60 (CAP 50-60). The main goal of this research is the development of a polymer-modified asphalt, with improvements in its physical properties, in order to obtain a more resistant material to the traffic loads. Furthermore, the use of this polymeric waste will result in economic and environmental benefits. The CAP 50-60 used in this research was kindly supplied by LUBNOR Lubrificantes e Derivados de Petróleo do Nordeste (produced in Fazenda Belém Aracati - Ceará) and the industrial polymeric waste was provided by a button manufacturer industry, located in Rio Grande do Norte state. This polymeric waste represents an environmental problem due to its difficulty in recycling and disposal, being necessary the payment by the industry to a landfill. The difficulty in its reuse is for being this material a termofixed polymer, as a result, the button chips resulting from the molding process cannot be employed for the same purpose. The first step in this research was the characterization of the polymeric waste, using Differential Scanning Calorimetry (DSC) Infrared spectroscopy (IR spectroscopy), and Thermogravimetric analysis (TGA). Based on the results, the material was classified as unsaturated polyester. After, laboratory experiments were accomplished seeking to incorporate the polymeric waste into the asphalt binder according to a 23 experimental factorial design, using as main factors: the polymer content (2%, 7% and 14%), the temperature of the mixture (140 and 180 oC) and the reaction time (20 and 60 minutes). The characterization of the polymer-modified asphalt was accomplished by traditional tests, such as: penetration, ring and ball softening point, viscosity, ductility and flash point temperature. The obtained results demonstrated that the addition of the polymeric waste into the asphalt binder modified some of its physical properties. However, this addition can be considered as a feasible alternative for the use of the polymeric waste, which is a serious environmental and technological problem.
Resumo:
Currently, studies in the area of polymeric microcapsules and nanocapsules and controlled release are considerably advanced. This work aims the study and development of microcapsules and nanocapsules from Chitosan/MDI, using a new technique of interfacial polycondensation combined to spontaneous emulsification, for encapsulation of BZ-3. It was firstly elaborated an experimental design of 23 of the particle in white without the presence of BZ-3 and Miglyol, where the variables were the concentrations of MDI, chitosan and solvent. Starting from the data supplied by the experimental design was chosen the experiment with smaller particle diameter and only added like this BZ-3 and Miglyol. The suspension containing concentrations of 6.25 mg/mL, 12.5 mg/mL, 18.75 mg/mL, 25 mg/mL of BZ-3 were prepared, nevertheless, during the storage time, these formulations presented drug precipitates in the suspensions of 18.75 mg/mL and 25 mg/mL of BZ-3. This apparition of precipitate was attributed to the diffusion of BZ-3 for the aqueous phase without any encapsulation, suggesting so the use of the smaller concentrations of the BZ-3. The suspension containing 6.25mg/mL of BZ3 presented average size of 1.47μm, zeta potential of 61 mV, pH 5.64 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. The suspension containing 12.5mg/mL of BZ-3 presented average size of 1.76μm, zeta potential of 47.4 mV, pH 5.71 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. Then, showing such important characteristics, these two formulations were chosen for futher continuity to the study. These formulations were also characterized by the morphology, FTIR, stability for Turbiscan, DSC and a study of controlled release of the BZ-3 was elaborated in different receiving means
Resumo:
The constant search for biodegradable materials for applications in several fields shows that carnauba wax can be a viable alternative in the manufacturing of biolubricants. Carnauba wax is the unique among the natural waxes to have a combination of properties of great importance. In previous studies it was verified the presence of metals in wax composition that can harm the oxidative stability of lubricants. Considering these factors, it was decided to develop a research to evaluate iron removal from carnauba wax, using microemulsion systems (Me) and perform the optimization of parameters, such as: extraction pH, temperature, extraction time, among others. Iron concentration was determined by atomic absorption and, to perform this analysis, sample digestion in microwave oven was used, showing that this process was very efficient. It was performed some analysis in order to characterize the wax sample, such as: attenuated total reflectance infrared spectroscopy (ATR-IR), thermogravimetry (TG), differential scanning calorimetry (DSC), energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM) and melting point (FP). The microemulsion systems were composed by: coconut oil as surfactant, n-butanol as cosurfactant, kerosene and/or heptanes as oil phase, distilled water as water phase. The pH chosen for this study was 4.5 and the metal extraction was performed in finite experiments. To evaluate Me extraction it was performed a factorial design for systems with heptane and kerosene as oil phase, also investigating the influence of temperature time and wax/Me ratio, that showed an statistically significant answer for iron extraction at 95% confidence level. The best result was obtained at 60°C, 10 hours contact time and 1: 10 wax/Me ratio, in both systems with kerosene and heptanes as oil phase. The best extraction occurred with kerosene as oil phase, with 54% iron removal
Resumo:
In this work, cellulose nanofibers were extracted from banana fibers via a steam explosion technique. The chemical composition, morphology and thermal properties of the nanofibers were characterized to investigate their suitability for use in bio-based composite material applications. Chemical characterization of the banana fibers confirmed that the cellulose content was increased from 64% to 95% due to the application of alkali and acid treatments. Assessment of fiber chemical composition before and after chemical treatment showed evidence for the removal of non-cellulosic constituents such as hemicelluloses and lignin that occurred during steam explosion, bleaching and acid treatments. Surface morphological studies using SEM and AFM revealed that there was a reduction in fiber diameter during steam explosion followed by acid treatments. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. TGA and DSC results showed that the developed nanofibers exhibit enhanced thermal properties over the untreated fibers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Polyurethanes are very versatile macromolecular materials that can be used in the form of powders, adhesives and elastomers. As a consequence, they constitute important subject for research as well as outstanding materials used in several manufacturing processes. In addition to the search for new polyurethanes, the kinetics control during its preparation is a very important topic, mainly if the polyurethane is obtained via bulk polymerization. The work in thesis was directed towards this subject, particularly the synthesis of polyurethanes based castor oil and isophorone diisocianate. As a first step castor oil characterized using the following analytical methods: iodine index, saponification index, refraction index, humidity content and infrared absorption spectroscopy (FTIR). As a second step, test specimens of these polyurethanes were obtained via bulk polymerization and were submitted to swelling experiments with different solvents. From these experiments, the Hildebrand parameter was determined for this material. Finally, bulk polymerization was carried out in a differential scanning calorimetry (DSC) equipment, using different heating rates, at two conditions: without catalyst and with dibutyltin dilaurate (DBTDL) as catalyst. The DSC curves were adjusted to a kinetic model, using the isoconversional method, indicating the autocatalytic effect characteristic of this class of polymerization reaction
Resumo:
Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.
Resumo:
In this work two kinds of material were studied: chitosan cross-linked with glutaraldehyde and in a blend with PEO. The resulting products as well as chitosan and PEO raw materials, were analyzed by TG/DTG, DSC and DMTA to determinate the in?uence of cross-linking and PEO addition on thermal properties of the resulting materials. It was observed by thermogravimetry that the water-polymer interaction will be different for the cross-linked material compared to the blend, according to the specific site availability. The in?uence of such modifications (cross-linking and PEO addition), on chitosan thermal stability was also studied. The DSC results showed a good agreement with the TG/DTG results, reinforcing the interpretation given for TG/DTG results. DMTA results indicate that glass transition temperature is around 50 degrees C for the polymer under study. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Thermal stability, thermal decomposition process, residual mass, temperature of glass transition (T-g) and temperature dependence of storage modulus (E'), were determined for latex membranes prepared from six clones of Hevea brasiliensis: IAC 331, IAC 332, IAC 333 and IAC 334 grown at experimental plantations of Instituto Agronomico de Campinas (IAC) in Votuporanga, São Paulo State, Brazil. Latex membranes from GT1 and RRIM 600 Asian matrix clones were used as references. The thermal behavior of latex membranes from genetically improved rubber trees was characterized using thermogravimetry/derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The thermal behavior of latex from clones studied in the present work showed similar features of the clones previously reported (IAC 40, IAC 300, IAC 301, IAC 328, IAC 329 and IAC 330), with mass loss in four consecutive steps, except IAC 333, which showed an additional mass loss step. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The contribution of new materials, involving composites and blends, has been reaching the most varied fields of science, as much of the scientific as technological point of view. This is due to the man's needs in applications, especially in medicine areas. Thus, this work shows the preparation and characterization of poly(vinylidene fluoride) (PVDF) and calcium carbonate (CaCO3) Composite films in order to analyse the incorporation of CaCO3 in PVDF for future application in bony restoration and bony filling. The films were prepared by casting method, where the PVDF pellet shape was dissolved in dimethylacetamide (DMA) and in a separate container CaCO3/DMA emulsion was also made. Soon afterwards they were mixed in several proportions 100/00, 95/05, 85/15, 70/30 in weight and left to dry in greenhouse. Homogeneous and flexible films were obtained and structurally characterized by attenuated total reflection infrared spectroscopy (FT-IR/ATR), thermal analyses (DSC, TGA), X-ray diffractometry, optical and scanning electron microscopies. The results showed that the material was a composite with good thermal stability until around 400 degrees C, the crystallinity of PVDF was non-polar alpha-phase and the obtained films were porous, being these filled with CaCO3. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Poly(styrene-co-methyl methacrylate) (PS-PMMA) ionomers with several degrees of sulfonation were synthesized and characterized by infrared, UV-vis, and NMR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). Stable Langmuir films could be produced with PS-PMMA with 3 and 6 mol % of sulfonation, while PS-PMMA 8% exhibited material loss to the water subphase, probably due to its higher solubility. Surface pressure and surface potential isotherms with PS-PMMA 3% spread onto salt-containing subphases pointed to a film behavior characteristic of the polyelectrolyte effect, where charge repulsion governs the film properties. The Langmuir-Blodgett films of this ionomer were successfully transferred onto various substrates, as confirmed by UV-vis and FTIR spectroscopies. Using cycling voltammetry, we show that LB films from PS-PMMA 3% can be applied in selective sensing of dopamine, even in the presence of interferents such as ascorbic acid.