883 resultados para FORECASTING
Resumo:
Commercialisation and adoption of remote sensing and GIS technologies for improved production forecasting, productivity, quality and paddock- to- plate tracking within the Australian Peanut Industry.
Resumo:
The number of bidders, N, involved in a construction procurement auction is known to have an important effect on the value of the lowest bid and the mark up applied by bidders. In practice, for example, it is important for a bidder to have a good estimate of N when bidding for a current contract. One approach, instigated by Friedman in 1956, is to make such an estimate by statistical analysis and modelling. Since then, however, finding a suitable model for N has been an enduring problem for researchers and, despite intensive research activity in the subsequent thirty years little progress has been made - due principally to the absence of new ideas and perspectives. This paper resumes the debate by checking old assumptions, providing new evidence relating to concomitant variables and proposing a new model. In doing this and in order to assure universality, a novel approach is developed and tested by using a unique set of twelve construction tender databases from four continents. This shows the new model provides a significant advancement on previous versions. Several new research questions are also posed and other approaches identified for future study.
Resumo:
Anticipating the number and identity of bidders has significant influence in many theoretical results of the auction itself and bidders’ bidding behaviour. This is because when a bidder knows in advance which specific bidders are likely competitors, this knowledge gives a company a head start when setting the bid price. However, despite these competitive implications, most previous studies have focused almost entirely on forecasting the number of bidders and only a few authors have dealt with the identity dimension qualitatively. Using a case study with immediate real-life applications, this paper develops a method for estimating every potential bidder’s probability of participating in a future auction as a function of the tender economic size removing the bias caused by the contract size opportunities distribution. This way, a bidder or auctioner will be able to estimate the likelihood of a specific group of key, previously identified bidders in a future tender.
Resumo:
Validation of new Indian seasonal climate forecasting products. In the Indian state of Andhra Pradesh (AP) kharif crops are heavily dependent on summer monsoon rains, where the timing and intensity of the rains affects crop yield. The majority of farms in AP are small and marginal, making them very vulnerable to yield reductions. Farmers also lack access to relevant information that might enable them to respond to seasonal conditions. Enabling farmers to utilise seasonal climate forecasting would allow them to respond to seasonal variability. To do this, farmers need a forecasting system that indicates a specific management strategy for the upcoming season, and effective and timely communication of the forecast information. Current agro-meteorological advisories in AP are issued on a bi-weekly basis, and they are relevant to an agro-climatic zone scale which may not be sufficiently relevant at a village level. Also, the information in the advisories may not be necessarily packaged in way relevant to cropping decisions by farmers. The objectives of this project are to evaluate the skill of seasonal climate forecasts to be issued for the 2008 monsoon season, to assess crop management options in response to seasonal scenarios that capture the range of seasonal climatic variability, to develop and evaluate options for effective communication and adoption of climate forecasts and agricultural advisories, and to synthesise and report on options for future research investments into seasonal climate forecasting.
Resumo:
The general change in the population structure and its impacts on the forest ownership structure were investigated in the thesis. The research assumed that the structural change in society has an effect on the outlook of the non-industrial private forest ownership. The changes in the structure of society were mainly restricted to population, education and occupation structures. The migration of the rural population into cities was also taken into consideration. The structural changes both in society and the non-industrial private forest ownership were examined as phenomena and their development directions were investigated since the middle of the 1970s. It could be established that the changes in the structures were mainly of the same kind in society as in forest owner structure. The clearest similarities between the changes in population and forest owner structure could be found in an increased mean age, a decrease in the 18 to 39 age bracket, those without a degree and in the farmers' shares. Furthermore it could be stated that migration into cities had taken place among both the forest owners and the general population. The main part of the research was concentrated on estimating regression models that explain the non-industrial private forest ownership change by the structural change in the population. A panel data was gathered from population statistics and previous forest ownership research information. The panel contained the years 1990 and 1999. With the assistance of the panel data it was possible to estimate regression and fixed effects' models that explained the structural changes in the non-industrial private forest ownership by evolution in the whole population. In the use of the estimated models authorities' forecasts considering the population were exploited. Only a few of the estimated models were statistically significant. This could be explained due to lack of a larger panel data. In addition the structural change of the non-industrial forest ownership was forecasted by trends.
Resumo:
Given the limited resources available for weed management, a strategic approach is required to give the best bang for your buck. The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species invasive potential.
Resumo:
The aim of this work was the assessment about the structure and use of the conceptual model of occlusion in operational weather forecasting. In the beginning a survey has been made about the conceptual model of occlusion as introduced to operational forecasters in the Finnish Meteorological Institute (FMI). In the same context an overview has been performed about the use of the conceptual model in modern operational weather forecasting, especially in connection with the widespread use of numerical forecasts. In order to evaluate the features of the occlusions in operational weather forecasting, all the occlusion processes occurring during year 2003 over Europe and Northern Atlantic area have been investigated using the conceptual model of occlusion and the methods suggested in the FMI. The investigation has yielded a classification of the occluded cyclones on the basis of the extent the conceptual model has fitted the description of the observed thermal structure. The seasonal and geographical distribution of the classes has been inspected. Some relevant cases belonging to different classes have been collected and analyzed in detail: in this deeper investigation tools and techniques, which are not routinely used in operational weather forecasting, have been adopted. Both the statistical investigation of the occluded cyclones during year 2003 and the case studies have revealed that the traditional classification of the types of the occlusion on the basis of the thermal structure doesn t take into account the bigger variety of occlusion structures which can be observed. Moreover the conceptual model of occlusion has turned out to be often inadequate in describing well developed cyclones. A deep and constructive revision of the conceptual model of occlusion is therefore suggested in light of the result obtained in this work. The revision should take into account both the progresses which are being made in building a theoretical footing for the occlusion process and the recent tools and meteorological quantities which are nowadays available.
Resumo:
Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The results show that the influence of community intervention factors (e.g. use of water efficient appliances and rainwater tanks) on water demand are among the most significant. The result also confirmed that the community intervention programmes and water pricing policy together can play a noticeable role in reducing the overall water demand. On the other hand, the influence of rainfall on water demand is found to be very limited, while temperature shows some degree of correlation with water demand. The results of this study would help water authorities to plan for effective water demand management strategies and to develop a water demand forecasting model with appropriate climatic factors to achieve sustainable water resources management. The methodology developed in this paper can be adapted to other water supply systems to identify the influential factors in water demand modelling and to devise an effective demand management strategy.
Resumo:
Urban sprawl is the outgrowth along the periphery of cities and along highways. Although an accurate definition of urban sprawl may be debated, a consensus is that urban sprawl is characterized by an unplanned and uneven pattern of growth, driven by multitude of processes and leading to inefficient resource utilization. Urbanization in India has never been as rapid as it is in recent times. As one of the fastest growing economies in the world, India faces stiff challenges in managing the urban sprawl, while ensuring effective delivery of basic services in urban areas. The urban areas contribute significantly to the national economy (more than 50% of GDP), while facing critical challenges in accessing basic services and necessary infrastructure, both social and economic. The overall rise in the population of the urban poor or the increase in travel times due to congestion along road networks are indicators of the effectiveness of planning and governance in assessing and catering for this demand. Agencies of governance at all levels: local bodies, state government and federal government, are facing the brunt of this rapid urban growth. It is imperative for planning and governance to facilitate, augment and service the requisite infrastructure over time systematically. Provision of infrastructure and assurance of the delivery of basic services cannot happen overnight and hence planning has to facilitate forecasting and service provision with appropriate financial mechanisms.
Resumo:
The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.
Resumo:
Numerical weather prediction (NWP) models provide the basis for weather forecasting by simulating the evolution of the atmospheric state. A good forecast requires that the initial state of the atmosphere is known accurately, and that the NWP model is a realistic representation of the atmosphere. Data assimilation methods are used to produce initial conditions for NWP models. The NWP model background field, typically a short-range forecast, is updated with observations in a statistically optimal way. The objective in this thesis has been to develope methods in order to allow data assimilation of Doppler radar radial wind observations. The work has been carried out in the High Resolution Limited Area Model (HIRLAM) 3-dimensional variational data assimilation framework. Observation modelling is a key element in exploiting indirect observations of the model variables. In the radar radial wind observation modelling, the vertical model wind profile is interpolated to the observation location, and the projection of the model wind vector on the radar pulse path is calculated. The vertical broadening of the radar pulse volume, and the bending of the radar pulse path due to atmospheric conditions are taken into account. Radar radial wind observations are modelled within observation errors which consist of instrumental, modelling, and representativeness errors. Systematic and random modelling errors can be minimized by accurate observation modelling. The impact of the random part of the instrumental and representativeness errors can be decreased by calculating spatial averages from the raw observations. Model experiments indicate that the spatial averaging clearly improves the fit of the radial wind observations to the model in terms of observation minus model background (OmB) standard deviation. Monitoring the quality of the observations is an important aspect, especially when a new observation type is introduced into a data assimilation system. Calculating the bias for radial wind observations in a conventional way can result in zero even in case there are systematic differences in the wind speed and/or direction. A bias estimation method designed for this observation type is introduced in the thesis. Doppler radar radial wind observation modelling, together with the bias estimation method, enables the exploitation of the radial wind observations also for NWP model validation. The one-month model experiments performed with the HIRLAM model versions differing only in a surface stress parameterization detail indicate that the use of radar wind observations in NWP model validation is very beneficial.
Resumo:
Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.
Resumo:
This thesis contains three subject areas concerning particulate matter in urban area air quality: 1) Analysis of the measured concentrations of particulate matter mass concentrations in the Helsinki Metropolitan Area (HMA) in different locations in relation to traffic sources, and at different times of year and day. 2) The evolution of traffic exhaust originated particulate matter number concentrations and sizes in local street scale are studied by a combination of a dispersion model and an aerosol process model. 3) Some situations of high particulate matter concentrations are analysed with regard to their meteorological origins, especially temperature inversion situations, in the HMA and three other European cities. The prediction of the occurrence of meteorological conditions conducive to elevated particulate matter concentrations in the studied cities is examined. The performance of current numerical weather forecasting models in the case of air pollution episode situations is considered. The study of the ambient measurements revealed clear diurnal variation of the PM10 concentrations in the HMA measurement sites, irrespective of the year and the season of the year. The diurnal variation of local vehicular traffic flows seemed to have no substantial correlation with the PM2.5 concentrations, indicating that the PM10 concentrations were originated mainly from local vehicular traffic (direct emissions and suspension), while the PM2.5 concentrations were mostly of regionally and long-range transported origin. The modelling study of traffic exhaust dispersion and transformation showed that the number concentrations of particles originating from street traffic exhaust undergo a substantial change during the first tens of seconds after being emitted from the vehicle tailpipe. The dilution process was shown to dominate total number concentrations. Minimal effect of both condensation and coagulation was seen in the Aitken mode number concentrations. The included air pollution episodes were chosen on the basis of occurrence in either winter or spring, and having at least partly local origin. In the HMA, air pollution episodes were shown to be linked to predominantly stable atmospheric conditions with high atmospheric pressure and low wind speeds in conjunction with relatively low ambient temperatures. For the other European cities studied, the best meteorological predictors for the elevated concentrations of PM10 were shown to be temporal (hourly) evolutions of temperature inversions, stable atmospheric stability and in some cases, wind speed. Concerning the weather prediction during particulate matter related air pollution episodes, the use of the studied models were found to overpredict pollutant dispersion, leading to underprediction of pollutant concentration levels.
Resumo:
The hype cycle model traces the evolution of technological innovations as they pass through successive stages pronounced by the peak, disappointment, and recovery of expectations. Since its introduction by Gartner nearly two decades ago, the model has received growing interest from practitioners, and more recently from scholars. Given the model's proclaimed capacity to forecast technological development, an important consideration for organizations in formulating marketing strategies, this paper provides a critical review of the hype cycle model by seeking evidence from Gartner's own technology databases for the manifestation of hype cycles. The results of our empirical work show incongruences connected with the reports of Gartner, which motivates us to consider possible future directions, whereby the notion of hype or hyped dynamics (though not necessarily the hype cycle model itself) can be captured in existing life cycle models through the identification of peak, disappointment, and recovery patterns.
Resumo:
This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and German business cycle recession periods. Financial variables, such as interest rates and stock market returns, are used as predictive variables. The empirical results suggest that the recession periods are predictable and dynamic probit models, especially models with the autoregressive structure, outperform the static model. Chapter 3 proposes a Lagrange Multiplier (LM) test for the usefulness of the autoregressive structure of the probit model. The finite sample properties of the LM test are considered with simulation experiments. Results indicate that the two alternative LM test statistics have reasonable size and power in large samples. In small samples, a parametric bootstrap method is suggested to obtain approximately correct size. In Chapter 4, the predictive power of dynamic probit models in predicting the direction of stock market returns are examined. The novel idea is to use recession forecast (see Chapter 2) as a predictor of the stock return sign. The evidence suggests that the signs of the U.S. excess stock returns over the risk-free return are predictable both in and out of sample. The new "error correction" probit model yields the best forecasts and it also outperforms other predictive models, such as ARMAX models, in terms of statistical and economic goodness-of-fit measures. Chapter 5 generalizes the analysis of univariate models considered in Chapters 2 4 to the case of a bivariate model. A new bivariate autoregressive probit model is applied to predict the current state of the U.S. business cycle and growth rate cycle periods. Evidence of predictability of both cycle indicators is obtained and the bivariate model is found to outperform the univariate models in terms of predictive power.