645 resultados para DISULFIDE
Resumo:
Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.
Resumo:
GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.
Resumo:
The Fc-fusion mimetic RpR 2 was prepared by disulfide bridging conjugation using a PEG in the place of the Fc. RpR 2 displayed higher affinity for VEGF than aflibercept caused primarily by a slower dissociation rate, which can prolong a drug at its site of action. RpRs have considerable potential for development as stable, organ specific therapeutics.
Resumo:
GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.
Resumo:
Oxidative refolding is one of the key challenges hampering the development of peptide based compounds as therapeutics. The correct refolding for three disulfide peptide like w-Conotoxi n MVIIA is difficult and crucial for biological activity. This work advanced knowledge of chemical and biological for improve oxidative refolding of synthetic w-Conotoxi n MVIIA in base of Conus magus venom. The present study aimed to set up an appropriate and effective protocols for refolding of disulfide-rich w-Conotoxin MVIIA. In this study, the crude peptide was protected with Acm group, according to the right amino acid sequences (Synthesized by Australian Company). The crude peptide was purified by H PLC. To prepare the peptide to refolding, innovative deprotection applied molar ratio (AMR) method was performed based on mercury. Accuracy of deprotection was approved by reverse phase chromatography. The deprotected target peptide (omega-conotoxin) was determined by SDS-PAGE. Then the Oxidative refolding of target peptide was performed in six protocol based on Guanidinium chloride and oxidized and reduced Glutathione. Analgesic effect of refolded peptide was surveyed with formalin test in mice Balb/c. Non neurotoxic effects of target peptides were survey with ICV injection in mice model (C57/BL6). The innovative deprotection protocol performed based on the best ratio of mercury/2-mercaptoethanol adjusted to 1mg/10p1 in 90 minute. The results showed the yield and purity of omega-conotoxin MVIIA as 93 and 95%, respectively. Refolding of 40 mg omega Conotoxin with GSSG and GSH on ratio of 10:1 and 20 mM ammonium acetate showed the best analgesic effect compared with the other methods. The result showed 95.5% yield and 98% purity of omega-conotoxin MVIIA in this refolding method. Related refolding method reduced 85% pain in experimented mice using 7 ng of the peptide. That was 71.5 fold stronger than morphine and 2 times than standard Prialt®. And it was not neurotoxic in mice. In this study, refolding method for omega-conotoxin MVIIA was optimized in the fourth factor including: reducing the time, amount and number of reagent and increase the efficiency. We introduced new method for deprotection of omega-conotoxin MVIIA. Effective, economic and applied refolding and deprotecti on method was performed in this research may al so be applied to similar omega conotoxin peptides.
Resumo:
Background: Bacillus thuringiensis Cry toxins bind with different insect midgut proteins leading to toxin oligomerization, membrane insertion and pore formation. However, different Cry toxins had been shown to readily form high molecular weight oligomers or aggregates in solution in the absence of receptor interaction. The role of Cry oligomers formed in solution remains uncertain. The Cry9A proteins show high toxicity against different Lepidoptera, and no-cross resistance with Cry1A. Results: Cry9Aa655 protein formed oligomers easily in solution mediated by disulfide bonds, according to SDS-PAGE analysis under non-reducing and reducing conditions. However, oligomerization is not observed if Cry9Aa655 is activated with trypsin, suggesting that cysteine residues, C14 and C16, located in the N-terminal end that is processed during activation participate in this oligomerization. To determine the role of these residues on oligomerization and in toxicity single and double alanine substitution were constructed. In contrast to single C14A and C16A mutants, the double C14A–C16A mutant did not form oligomers in solution. Toxicity assays against Plutella xylostella showed that the C14A–C16A mutant had a similar insecticidal activity as the Cry9Aa655 protein indicating the oligomers of Cry9Aa formed in solution in the absence of receptor binding are not related with toxicity. Conclusions: The aggregation of Cry9Aa655 polypeptides was mediated by disulfide bonds. Cry9Aa655 C14 and C16C are involved in oligomerization in solution. These aggregate forms are not related to the mode of action of Cry9Aa leading to toxicity.
Resumo:
Thesis (Ph. D.)--Cornell University, Oct., 1923.
Resumo:
The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.
Resumo:
The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.
Resumo:
Glutaredoxins (Grxs) are small (9-12 kDa) heat-stable proteins that are ubiquitously distributed. In Saccharomyces cerevisiae, seven Grx enzymes have been identified. Two of them (yGrx1 and yGrx2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Here, we show that yGrx2 has a specific activity 15 times higher than that of yGrx1, although these two oxidoreductases share 64% identity and 85% similarity with respect to their amino acid sequences. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that yGrx2 possesses a lower Km for glutathione and a higher turnover than yGrx1. To better comprehend these biochemical differences, the pK(a) of the N-terminal active-site cysteines (Cys27) of these two proteins and of the yGrx2-C30S mutant were determined. Since the pK(a) values of the yGrx1 and yGix2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. Therefore, crystal structures of yGrx2 in the oxidized form and with a glutathionyl mixed disulfide were determined at resolutions of 2.05 and 1.91 angstrom, respectively. Comparisons of yGrx2 structures with the recently determined structures of yGrx1 provided insights into their remarkable functional divergence. We hypothesize that the substitutions of Ser23 and Gln52 in yGrx1 by Ala23 and Glu52 in yGrx2 modify the capability of the active-site C-terminal cysteine to attack the mixed disulfide between the N-terminal active-site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between yGrx1 and yGrx2 may reflect variations in substrate specificity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 M(-1) s(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie similar to 12.3 angstrom apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.
Resumo:
The first part of this thesis deals with the phenomenon of thermoelectricity. It involves the improvement of the thermoelectric properties of silicon using innovative nanostructures. My contribution was to help fabricate these thermoelectric devices, and is the focus of this part of the thesis.
The second part and primary focus of this thesis is the analysis of thin films using scanning probe techniques. These surface techniques include atomic force microscopy, electric force microscopy, Kelvin probe force microscopy, and scanning tunneling microscopy. The thin films studied are graphene and molybdenum disulfide, two remarkable materials that display unique two-dimensional qualities. These materials are shown to be useful in studying the properties of adsorbates trapped between them and the substrate on which they rest. Moreover, these adsorbed species are seen to affect the structural and electronic properties of the thin films themselves. Scanning probe analyses are particularly useful in elucidating the properties of these materials, as surface effects play a significant role in determining their characteristics.
The final part of this thesis is concerned with the study of Akt in live cells using protein capture agents previously developed by my colleagues. The activation and degradation of Akt is investigated using various biological assays, including Western blots, in vitro kinase assays, and cell viability assays. Finally, the usefulness of synthetic capture agents in perturbing protein pathways and as delivery agents is assessed and analyzed.
Resumo:
Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas
Resumo:
Purpose: To synthesize and characterize S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4- oxadiazole-5-thiol derivatives. Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of sulfuric acid to form ethyl 2-(1H-indol-3-yl)acetate (2) which was transformed to 2-(1H-indol-3- yl)acetohydrazide (3) by refluxing with hydrazine hydrate in methanol. Ring closure reaction of 3 with carbon disulfide and ethanolic potassium hydroxide yielded 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5- thiol (4) which was finally treated with alkyl/aralkyl halides (5a-u) in DMF and NaH to yield Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u). Structural elucidation was done by IR, 1H-NMR and EI-MS techniques Results: 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol (4) was synthesized as the parent molecule and was characterized by IR and the spectrum showed peaks resonating at (cm-1) 2925 (Ar-H), 2250 (S-H ), 1593 (C=N ) and 1527 (Ar C=C ); 1H-NMR spectrum showed signals at δ 11.00 (s, 1H, NH-1ʹ), 7.49 ( br.d, J = 7.6 Hz, 1H, H-4\'), 7.37 (br.d, J = 8.0 Hz, 1H, H-7\'), 7.34 (br.s, 1H, H-2\'), 7.09 (t, J = 7.6 Hz, 1H, H-5\'), 7.00 (t, J = 7.6 Hz, 1H, H-6\') and 4.20 (s, 2H, CH2-10ʹ). EI-MS presented different fragments peaks at m/z 233 (C11H9N3OS)˙+ [M+2]+, 231 (C11H9N3OS)˙+ [M]+, 158 (C10H8NO)+, 156 (C10H8N2)˙+, 130 (C9H8N)+. The derivatives (6a-6u) were prepared and characterized accordingly. Conclusion: S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u) were successfully synthesized.
Resumo:
The waste of the broiler processing (feather) is a potential source for animal feed. However the presence of keratins cause limited of feather use. Before using, therefore, feather must be treated to hydrolyze cysteine disulfide bound dominating keratins protein. Enzymatic (biological) treatment using microbes will produce specific feather hydrolyzed and does not have negative impact on environment. The research objected to get the microbes which degradated selected keratins, improve protein quality of feather meal and find out the best ration formulation true in vitro the basic information to formulate in vivo ration. The research has been done in Laboratory of Animal Feedstuff Faculty of Animal Science UNSOED for eight months. Fermentation trial was done on liquid media with bath system. In vitro trial used of Tilley and Terry methods with parameter observe was dry matter digestibility, organic matter digestibility, protein degradation, total VFA and solubility in pepsin. Based on all parameter, on fermentation trial with Bacillus licheniformis decides broiler chicken feather had good prospect to be developed on feed protein source. In vitro trial recommended ration with formulation of fermented feather meal concentrate (15 percent), soybeans meal (5 percent), rice bran (20 percent), molasses (4 percent), mineral mix (1 percent), with forage: concentrate ratio 40 : 60 could be used as in vivo ration. (Animal Production 5(1): 19-24 (2003)Â Key words : Hydrolyze, Feather, Keratin, Digestibility, Ruminant