768 resultados para Chebyshev polynomials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this dissertation is to improve the knowledge of knots and links in lens spaces. If the lens space L(p,q) is defined as a 3-ball with suitable boundary identifications, then a link in L(p,q) can be represented by a disk diagram, i.e. a regular projection of the link on a disk. In this contest, we obtain a complete finite set of Reidemeister-type moves establishing equivalence, up to ambient isotopy. Moreover, the connections of this new diagram with both grid and band diagrams for links in lens spaces are shown. A Wirtinger-type presentation for the group of the link and a diagrammatic method giving the first homology group are described. A class of twisted Alexander polynomials for links in lens spaces is computed, showing its correlation with Reidemeister torsion. One of the most important geometric invariants of links in lens spaces is the lift in 3-sphere of a link L in L(p,q), that is the counterimage of L under the universal covering of L(p,q). Starting from the disk diagram of the link, we obtain a diagram of the lift in the 3-sphere. Using this construction it is possible to find different knots and links in L(p,q) having equivalent lifts, hence we cannot distinguish different links in lens spaces only from their lift. The two final chapters investigate whether several existing invariants for links in lens spaces are essential, i.e. whether they may assume different values on links with equivalent lift. Namely, we consider the fundamental quandle, the group of the link, the twisted Alexander polynomials, the Kauffman Bracket Skein Module and an HOMFLY-PT-type invariant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After briefly discuss the natural homogeneous Lie group structure induced by Kolmogorov equations in chapter one, we define an intrinsic version of Taylor polynomials and Holder spaces in chapter two. We also compare our definition with others yet known in literature. In chapter three we prove an analogue of Taylor formula, that is an estimate of the remainder in terms of the homogeneous metric.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In my work I derive closed-form pricing formulas for volatility based options by suitably approximating the volatility process risk-neutral density function. I exploit and adapt the idea, which stands behind popular techniques already employed in the context of equity options such as Edgeworth and Gram-Charlier expansions, of approximating the underlying process as a sum of some particular polynomials weighted by a kernel, which is typically a Gaussian distribution. I propose instead a Gamma kernel to adapt the methodology to the context of volatility options. VIX vanilla options closed-form pricing formulas are derived and their accuracy is tested for the Heston model (1993) as well as for the jump-diffusion SVJJ model proposed by Duffie et al. (2000).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nella tesi si illustra il passaggio dagli spazi polinomiali agli spazi polinomiali generalizzati, gli spazi di Chebyshev estesi (spazi EC), e viene dato un metodo per costruirli a partire da opportuni sistemi di funzioni dette funzioni peso. Successivamente si tratta il problema dell'esistenza di un analogo della base di Bernstein negli spazi EC: si presenta, in analogia ad una particolare costruzione nel caso polinomiale, una dimostrazione costruttiva dell'esistenza di tale base. Infine viene studiato il problema delle lunghezze critiche di uno spazio EC: si tratta di determinare l'ampiezza dell'intervallo oltre la quale lo spazio considerato perde le proprietà di uno spazio EC, o non possiede più una base di Bernstein generalizzata; l'approccio adottato è di tipo sperimentale: nella tesi sono presentati i risultati ottenuti attraverso algoritmi di ricerca che analizzano le proprietà delle funzioni di transizione e ne traggono informazioni sullo spazio di studio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The excitation spectrum is one of the fundamental properties of every spatially extended system. The excitations of the building blocks of normal matter, i.e., protons and neutrons (nucleons), play an important role in our understanding of the low energy regime of the strong interaction. Due to the large coupling, perturbative solutions of quantum chromodynamics (QCD) are not appropriate to calculate long-range phenomena of hadrons. For many years, constituent quark models were used to understand the excitation spectra. Recently, calculations in lattice QCD make first connections between excited nucleons and the fundamental field quanta (quarks and gluons). Due to their short lifetime and large decay width, excited nucleons appear as resonances in scattering processes like pion nucleon scattering or meson photoproduction. In order to disentangle individual resonances with definite spin and parity in experimental data, partial wave analyses are necessary. Unique solutions in these analyses can only be expected if sufficient empirical information about spin degrees of freedom is available. The measurement of spin observables in pion photoproduction is the focus of this thesis. The polarized electron beam of the Mainz Microtron (MAMI) was used to produce high-intensity, polarized photon beams with tagged energies up to 1.47 GeV. A "frozen-spin" Butanol target in combination with an almost 4π detector setup consisting of the Crystal Ball and the TAPS calorimeters allowed the precise determination of the helicity dependence of the γp → π0p reaction. In this thesis, as an improvement of the target setup, an internal polarizing solenoid has been constructed and tested. A magnetic field of 2.32 T and homogeneity of 1.22×10−3 in the target volume have been achieved. The helicity asymmetry E, i.e., the difference of events with total helicity 1/2 and 3/2 divided by the sum, was determined from data taken in the years 2013-14. The subtraction of background events arising from nucleons bound in Carbon and Oxygen was an important part of the analysis. The results for the asymmetry E are compared to existing data and predictions from various models. The results show a reasonable agreement to the models in the energy region of the ∆(1232)-resonance but large discrepancies are observed for energy above 600 MeV. The expansion of the present data in terms of Legendre polynomials, shows the sensitivity of the data to partial wave amplitudes up to F-waves. Additionally, a first, preliminary multipole analysis of the present data together with other results from the Crystal Ball experiment has been as been performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le funzioni polinomiali possono essere utilizzate per approssimare le funzioni continue. Il vantaggio è che i polinomi, le loro derivate e primitive, possono essere rappresentati in maniera semplice attraverso i loro coefficienti ed esistono algoritmi stabili e veloci per valutarli. Inoltre gli spazi polinomiali godono di numerose proprietà importanti. In questo lavoro ci occuperemo di altri spazi funzionali, noti in letteratura come spazi di Chebyshev o polinomi generalizzati, per ragioni di riproducibilità. Infatti ciò che si ottiene attraverso i polinomi è soltanto una approssimazione che spesso risulta essere insufficiente. E' importante, quindi, considerare degli spazi in cui sia possibile avere una rappresentazione esatta di curve. Lo studio di questi spazi è possibile grazie alla potenza di elaborazione degli attuali calcolatori e al buon condizionamento di opportune basi di rappresentazione di questi spazi. Negli spazi polinomiali è la base di Bernstein a garantire quanto detto. Negli spazi di Chebyshev si definisce una nuova base equivalente. In questo lavoro andremo oltre gli spazi di Chebyshev ed approfondiremo gli spazi di Chebyshev a tratti, ovvero gli spazi formati dall'unione di più spazi del tipo precedente. Si dimostrerà inoltre l'esistenza di una base a tratti con le stesse proprietà della base di Bernstein per gli spazi polinomiali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general approach is presented for implementing discrete transforms as a set of first-order or second-order recursive digital filters. Clenshaw's recurrence formulae are used to formulate the second-order filters. The resulting structure is suitable for efficient implementation of discrete transforms in VLSI or FPGA circuits. The general approach is applied to the discrete Legendre transform as an illustration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analog filters and direct digital filters are implemented using digital signal processing techniques. Specifically, Butterworth, Elliptic, and Chebyshev filters are implemented using the Motorola 56001 Digital Signal Processor by the integration of three software packages: MATLAB, C++, and Motorola's Application Development System. The integrated environment allows the novice user to design a filter automatically by specifying the filter order and critical frequencies, while permitting more experienced designers to take advantage of MATLAB's advanced design capabilities. This project bridges the gap between the theoretical results produced by MATLAB and the practicalities of implementing digital filters using the Motorola 56001 Digital Signal Processor. While these results are specific to the Motorola 56001 they may be extended to other digital signal processors. MATLAB handles the filter calculations, a C++ routine handles the conversion to assembly code, and the Motorola software compiles and transmits the code to the processor

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Custom modes at a wavelength of 1064 nm were generated with a deformable mirror. The required surface deformations of the adaptive mirror were calculated with the Collins integral written in a matrix formalism. The appropriate size and shape of the actuators as well as the needed stroke were determined to ensure that the surface of the controllable mirror matches the phase front of the custom modes. A semipassive bimorph adaptive mirror with five concentric ring-shaped actuators and one defocus actuator was manufactured and characterised. The surface deformation was modelled with the response functions of the adaptive mirror in terms of an expansion with Zernike polynomials. In the experiments the Nd:YAG laser crystal was quasi-CW pumped to avoid thermally induced distortions of the phase front. The adaptive mirror allows to switch between a super-Gaussian mode, a doughnut mode, a Hermite-Gaussian fundamental beam, multi-mode operation or no oscillation in real time during laser operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Für Einzelkomponenten von Materi-alflusssystemen sind neben exakten analytischen Verfahren auch Näherungslösungen und Ersatzmodelle in Form von Polynomen, neuronalen Netzen oder zeitdiskreten Verfahren vorhanden, mit denen eine gute Nachbildung des Verhaltens dieser Komponenten möglich ist. Ziel des Baukastensystems ist es, für diese Vielzahl von Methoden mit ihren spezifischen Ein- und Aus-gangsgrößen eine übergeordnete, einheitliche Kommunikations- und Datenschnittstelle zu definieren. In einem grafischen Editor kann ein Modell eines Materialflusssystems aus solchen Bausteinen gebildet und parametriert werden. Durch Verbindungen zwischen den Bausteinen werden Informationen ausge-tauscht. Die Berechnungen der Bausteine liefern Aussagen zu Auslastungen, Warteschlangen bzw. Warte-zeiten vor den Bausteinen sowie Flussgrößen zur Beschreibung der Abgangströme. The optimal arrangement of logistical systems and operations gets an increased importance for the economicalness and competitiveness of enterprises. For individual components of material flow systems there are also existing approximate solutions and substitute models besides exact analytical calculations in the form of polynomials, neural nets or time-discrete analysis which allows a good analytical description of the behaviour of these components. It is aim of the module system to define a superordinate and unified communication and data interface for all of these variety of methods with her specific input and output quantities. By using a graphic editor, the material flow system can be modelled of such components with specified functions and parameters. Connections between the components allows exchange of information. The calculations of the components provide statements concerning utilization, queue size or waiting time ahead of the components as well as parameters for the description of the departure process. Materialflusssysteme sind Träger innerbetrieblicher Transportprozesse und elementarer Bestandteil logistischer Systeme. Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Die effiziente Dimensionierung von Materialflusssystemen ist für Planer, Hersteller und Betreiber solcher Anlagen von grundsätzlicher Bedeutung. Für viele bei der Planung materialflusstechnischer Anlagen auftretende Fragestellungen steht noch immer kein Berechnungsverfahren oder -werkzeug zur Verfügung, welches allen drei folgenden Anforderungen gleicherma-ßen gerecht wird: Die Handhabung soll einfach, unkompliziert und schnell sein. Die Berechnungsergebnisse sollen eine hohe Genauigkeit haben. Die Berechnung soll allgemein gültige Ergebnisse liefern. Dabei handelt es sich um Fragestellungen, die durchaus grundlegender Natur sind. Beispielsweise nach den (statistisch) zu erwartenden minimalen und maximalen Auftragsdurchlaufzeiten, nach dem Einfluss von Belas-tungsschwankungen auf die Anlagenleistung, nach vorzusehenden Puffern (Stauplätze) und Leistungsreserven (Auslastung). Für die oben genannten Aufgaben der Materialflussplanung stehen heute hauptsächlich drei Verfahren zur Verfügung (Abb. 1): Faustformeln (gekennzeichnet mit f) sind einfach aber ungenau. Das Systemverhalten von Materialfluss-komponenten beschreiben sie selten über den gesamten Bereich möglicher Betriebsbedingungen und Konfi-gurationen. Das Verhalten von gesamten Materialflusssystemen ist zu komplex, als dass es mit Faustformeln adäquat beschreibbar wäre. Bedienungstheoretische Ansätze erlauben die Beschreibung von Materialflusskomponenten (kleines b) sehr genau und sehr umfassend, soweit Standardmethoden und -modelle der Bedienungstheorie anwendbar sind. Ist diese Voraussetzung nicht gegeben, kann der Aufwand zur Modellbildung schnell erheblich werden. Die Beschreibung von Materialflusssystemen (großes B) als Bedienungsnetzwerke ist nur unter (zum Teil stark) vereinfachenden Annahmen möglich. Solche Vereinfachungen gehen zu Lasten von Genauigkeit und All-gemeingültigkeit der Aussagen. Die Methoden sind häufig sehr komplex, ihre Anwendung erfordert vertief-te Kenntnisse in der Statistik und Stochastik. Simulationsuntersuchungen liefern für Materialflusskomponenten (kleines s) und für Materialflusssysteme (großes S) gleichermaßen genaue Aussagen. Der für die Untersuchungen erforderliche Aufwand hängt dabei weit weniger von den Eigenschaften und der Größe des Systems ab, als es bei bedienungstheoretischen An-sätzen der Fall ist. Die Aussagen der Simulation sind nie universell. Sie betreffen immer nur ein System in einer bestimmten Konfiguration. Die Anwendung der Simulation erfordert Spezialsoftware und vertiefte Kenntnisse in der Modellierung und Programmierung. Verfahren, die genaue und allgemein gültige Aussagen über das Verhalten komplexer Materialflusssysteme liefern können, sind insbesondere in der Phase der Angebotserstellung bzw. in der Phase der Grobplanung von besonderer Wichtigkeit. Andererseits sind heute verfügbare Verfahren aber zu kompliziert und damit unwirt-schaftlich. Gerade in der Phase der Systemgrobplanung werden häufig Änderungen in der Struktur des Systems notwendig, welche z.B. beim Einsatz der Simulation zu erheblichem Änderungsaufwand am Modell führt. Oftmals können solche Änderungen nicht schnell genug ausgeführt werden. Damit bleiben in der Praxis oft erhebliche Planungsunsicherheiten bestehen. Der Grundgedanke des Baukastensystems besteht in der Modularisierung von Materialflusssystemen in einzelne Bausteine und Berechnungen zum Verhalten dieser Komponenten. Die betrachteten Module sind Materialfluss-komponenten, die eine bestimmte logistische Funktion in einer konstruktiv bzw. steuerungstechnisch bedingten, definierten Weise ausführen. Das Verhalten einer Komponente wird durch Belastungen (Durchsatz) und techni-sche Parameter (Geschwindigkeit, Schaltzeit o.ä.) beeinflusst und kann durch ein adäquates mathematisches Modell quantifiziert werden. Das offene Baukastensystem soll dabei vor allem einen konzeptionellen Rahmen für die Integration derartiger Modellbausteine bilden. Es umfasst neben der Bausteinmodularisierung die Problematik der Kommunikation zwischen den Bausteinen (Schnittstellen) sowie Möglichkeiten zur Visualisierung von Ergebnissen. Das daraus abgeleitete softwaretechnische Konzept berücksichtigt neben der einheitlichen Integration der zum Teil stark unterschiedlichen Berechnungsverfahren für einzelne Materialflusskomponenten auch einheitliche Definitionen zur Beschreibung von benötigten Eingangsparametern einschließlich der Randbedingungen (Defini-tionsbereich) und Plausibilitätskontrollen sowie zur Ergebnisbereitstellung. Äußerst wichtig war die Zielstellung, das System offen und erweiterbar zu gestalten: Prototypisch wurden zwar einzelne vorliegende Bausteine integ-riert, es ist aber jederzeit möglich, weitere Verfahren in Form eines Bausteines zu implementieren und in das Baukastensystem einzubringen. Die Ergebnisse der Berechnungen für ein einzelnes Element (Output) fließen zugleich als Input in das nachfol-gende Element ein: Genau wie im realen Materialflusssystem durch Aneinanderreihung einzelner fördertechni-scher Elemente der Materialfluss realisiert wird, kommt es im Baukasten durch Verknüpfung der Bausteine zur Übertragung der relevanten Informationen, mit denen der Fluss beschrieben werden kann. Durch die Weitergabe der Ergebnisse kann trotz Modularisierung in einzelne Bausteine das Verhalten eines gesamten Materialflusssys-tems bestimmt werden. Daher sind auch hier einheitliche Festlegungen zu Art und Umfang der Übergabeparame-ter zwischen den Bausteinen erforderlich. Unter einem Baustein soll ein Modell einer Materialflusskomponente verstanden werden, welches das Verhalten dieser Komponente beim Vorliegen bestimmter Belastungen beschreibt. Dieses Verhalten ist insbesondere gekennzeichnet durch Warteschlangen und Wartezeiten, die vor der Komponente entstehen, durch Auslastung (Besetztanteil) der Komponente selbst und durch die Verteilung des zeitlichen Abstand (Variabilität) des die Komponente verlassenden Stroms an Transporteinheiten. Maßgeblich bestimmt wird dieses Verhalten durch Intensität und Variabilität des ankommenden Stroms an Transporteinheiten, durch die Arbeitsweise (z.B. stetig / unstetig, stochastisch / deterministisch) und zeitliche Inanspruchnahme der Komponente sowie durch Steuerungsregeln, mit denen die Reihenfolge (Priorisierung / Vorfahrt) und/oder Dauer der Abarbeitung (z.B. Regalbediengerät mit Strategie „Minimierung des Leerfahrtan-teils“) verändert werden. Im Grunde genommen beinhaltet ein Baustein damit ein mathematisches Modell, das einen oder mehrere an-kommende Ströme von Transporteinheiten in einen oder mehrere abgehende Ströme transformiert (Abb. 2). Derartige Modelle gibt es beispielsweise in Form von Bedienmodellen ([Gnedenko1984], [Fischer1990 u.a.]), zeitdiskreten Modellen ([Arnold2005], [Furmans1992]), künstlichen neuronalen Netzen ([Schulze2000], [Markwardt2003]), Polynomen ([Schulze1998]). Die zu Grunde liegenden Verfahren (analytisch, simulativ, numerisch) unterscheiden sich zwar erheblich, genü-gen aber prinzipiell den genannten Anforderungen. Die Fixierung auf ein mathematisches Modell ist aber nicht hinreichend, vielmehr bedarf es für einen Baustein auch definierter Schnittstellen, mit denen der Informationsaustausch erfolgen kann (Abb. 3). Dazu zählen neben der einheitlichen Bereitstellung von Informationen über die ankommenden und abgehenden Materialströme auch die Berücksichtigung einer individuellen Parametrierung der Bausteine sowie die Möglichkeit zur Interaktion mit dem Bediener (Anordnung, Parametrierung und Visualisierung). Das offene Konzept erlaubt das eigenständige Entwickeln und Aufnehmen neuer Bausteine in den Baukasten. Dazu ergibt sich als weitere Anforderung die einfache Konfigurierbarkeit eines Bausteins hinsichtlich Identifika-tion, Aussehen und Leistungsbeschreibung. An einen Baustein innerhalb des Baukastensystems werden weiter-hin die folgenden Anforderungen gestellt: Jeder Baustein ist eine in sich abgeschlossene Einheit und kann nur über die Ein- und Ausgänge mit seiner Umgebung kommunizieren. Damit ist ausgeschlossen, dass ein Baustein den Zustand eines ande-ren Bausteins beeinflussen kann. Das führt zu den beiden Lokalitätsbedingungen: Es gibt keine �����bergeordnete Steuerung, die in Abhängigkeit vom aktuellen Systemzustand dispositive Entscheidungen (z.B. zur Routenplanung) trifft. Blockierungen in Folge von Warteschlangen haben keine Auswirkungen auf die Funktion an-derer Bausteine. Bausteine beinhalten in sich abgeschlossene Verfahren zur Dimensionierung einer Komponente (Klas-se) des Materialflusssystems (z.B. Einschleusung auf einen Sorter, Drehtisch als Verzweigungselement oder als Eckumsetzer). Dabei werden auf Grund von technischen Parametern, Steuerungsstrategien und Belastungsannahmen (Durchsatz, Zeitverteilungen) Ergebnisse ermittelt. Ergebnisse im Sinne dieses Bausteinkonzepts sind Auslastungen, Warteschlangen bzw. Wartezeiten vor dem Baustein sowie Flussgrößen zur Beschreibung des Abgangstroms. Als Beschreibung eignen sich sowohl einzelne Kennwerte (Mittelwert, Varianz, Quantile) als auch statische Verteilungsfunktionen. Die Lokalitätsbedingungen stellen Einschränkungen in der Anwendbarkeit des Baukastensystems dar: Systeme mit übergeordneten Steuerungsebenen wie Routenplanung oder Leerfahrzeugsteuerung, die Entscheidungen auf Grund der vorhandenen Transportaufträge und des aktuellen Systemzustands treffen (Fahrerlose Transportsys-teme, Elektrohängebahn), können mit dem Baukasten nicht bearbeitet werden. Diese auf Unstetigförderern basierenden Systeme unterscheiden sich aber auch in ihren Einsatzmerkmalen grundlegend von den hier betrach-teten Stetigförderersystemen. Das Problem der Blockierungen vorgelagerter Bereiche durch zu große Warteschlangen kann dagegen bereits mit dem Baukasten betrachtet und zumindest visualisiert werden. Dazu ist den Verbindungen zwischen den Bausteinen eine Kapazität zugeordnet, so dass durch Vergleich mit den berechneten Warteschlangenlängen eine generelle Einschätzung zur Blockierungsgefahr möglich wird: Ist die Streckenkapazität kleiner als die mittlere Warteschlange, muss von einer permanenten Blockierung ausgegangen werden. In diesem Fall kann der vorhergehende Baustein seine gerade in Bearbeitung befindli-che Transporteinheit nach dem Ende der „Bedienung“ nicht sofort abgeben und behindert damit auch seine weiteren ankommenden Transporteinheiten. Für die Transporteinheiten bedeutet das eine Verlustzeit, die auch nicht wieder aufgeholt werden kann, für das gesamte Transportsystem ist von einer Leistungsminde-rung (geringerer Durchsatz, größere Transport- / Durchlaufzeit) auszugehen. Da bei der Berechnung der Bausteine von einer Blockierfreiheit ausgegangen wird, sind die Berechnungser-gebnisse in aller Regel falsch. Ist die Streckenkapazität zwar größer als die mittlere Warteschlange, aber kleiner als beispielsweise das 90%-Quantil der Warteschlange, ist mit teilweisen Blockierungen (in dem Fall mit mehr als 10% Wahr-scheinlichkeit) zu rechnen. Dann tritt der o.g. Effekt nur zeitweise auf. Die Ergebnisse der Berechungen sind dann zumindest für einzelne Bausteine ungenau. In beiden Fällen wird das Problem erkannt und dem Anwender signalisiert. Es wird davon ausgegangen, dass die geplante Funktionalität und Leistungsfähigkeit des Materialflusssystems nur dann gewährleistet ist, wenn keine Blockierungen auftreten. Durch Änderung der Parameter des kritischen Bausteins, aber auch durch Änderung der Materialströme muss daher eine Anpassung vorgenommen werden. Erst bei Vorliegen der Blockierfreiheit ist die Voraussetzung der Lokalität der Berechnungen erfüllt. Die Berechnungsverfahren in den Bausteinen selbst können wegen der Modularisierung (Lokalität) sehr unter-schiedlicher Art sein. Dabei ist es prinzipiell möglich, die einzelnen Ergebnisse eines Bausteins mit verschiede-nen Verfahren zu ermitteln, insbesondere dann, wenn auf Grund eines eingeschränkten Definitionsbereichs der Eingangsparameter die Anwendung eines bestimmten Verfahrens nicht zulässig ist. Bausteine, die einen Materialfluss auf Grund äußerer, nicht aus dem Verhalten des Bausteins resultierende Einflüsse generieren (Quelle) oder verändern (Service-Station), sind durch eine Flussgröße  parametriert. Die Flussgröße ist eine statistische Verteilungsfunktion zur Beschreibung der Ankunfts- und Abgangsströme (Zwi-schenankunftszeiten). In der Praxis, insbesondere in der Planungsphase, ist aber eine solche Verteilungsfunktion meist nicht bekannt. Zudem erweist sich das Rechnen mit Verteilungsfunktionen als numerisch aufwändig. Untersuchungen in [Markwardt2003] haben gezeigt, dass eine Parametrisierung als Abstraktion über statistische Verteilungsfunktionen mit gleichen Erwartungswerten, Minima und Streuungen ausreichend genaue Ergebnisse liefert. Daher wird die Flussgröße beschrieben durch die Parameter Ankunftsrate (=Durchsatz), Mindestzeitabstand tmind und Variationskoeffizient c (als Maß für die Variabilität des Stroms). Zur Visualisierung der Ergebnisse kann die dreiparametrige Gammaverteilung zu Grunde gelegt werden, die eine gute Anpassung an reale Prozessverläufe bietet und durch die genannten Parameter eindeutig beschrieben ist: Weitere leistungsbestimmende Größen wie technische Parameter, Zeitbedarfe u.ä. werden als Parametertupel (k) der jeweiligen Klasse zugeordnet. So ist z.B. bei einer Einschleusung auf einen Sorter zu garantieren, dass der Strom auf der Hauptstrecke nicht angehalten wird. Das erfordert bei einer Einschleusung von der Nebenstrecke eine Lücke im Gutstrom auf der Hauptstrecke mit der Länge Mindestabstand und Fördergeschwindigkeit sind Parameter der ankommenden Förderstrecken, demnach ist lediglich die Größe ttr als Transferzeit ein leistungsbestimmender Parameter der Einschleusung. Förderstrecken stellen die Verbindungen zwischen den Bausteinen her und realisieren den eigentlichen Material-fluss durch das System. Die technische Realisierung kann dabei prinzipiell durch verschiedenartige Bauformen von Stetig- und Unstetigförderern erfolgen. Systeme, die aber vollständig auf der Basis von Unstetigförderern arbeiten wie fahrerlose Transportsysteme (FTS) oder Elektrohängebahn (EHB), werden im Rahmen des Baukas-tens nicht betrachtet, weil die Lokalitätsbedingungen nicht gelten und beispielsweise eine übergeordnete Sys-temsteuerung (Fahrzeugdisposition, Leerfahrtoptimierung) einen erheblichen Einfluss auf die Leistungsfähigkeit des Gesamtsystems hat. Förderstrecken im hier verwendeten Sinne sind Rollen-, Ketten-, Bandförderer oder ähnliches, deren maximaler Durchsatz im Wesentlichen durch zwei Parameter bestimmt wird: Fördergeschwindigkeit (vF) und Mindestab-stand zwischen den Transporteinheiten (smind). Der Mindestabstand ergibt sich aus der Länge der Transportein-heit in Transportrichtung (sx) und einem Sicherheitsabstand (s0), der für ein sicheres und gefahrloses Transportie-ren erforderlich ist. Die Mindestzeit tmind,S zwischen zwei Fördereinheiten auf einer Förderstrecke bestimmt sich demnach zu Ist das verbindende Förderelement nicht staufähig (nicht akkumulierend, z.B. Gurtbandförderer), so kann sich der Abstand zwischen den Fördergütern während des Förder- oder Transportvorgangs nicht verändern: Muss das Band angehalten werden, weil eine Abgabe an das nachfolgende Förderelement nicht möglich ist, bleiben alle Einheiten stehen. In diesem Fall ist es also nicht möglich, die Lücken im Transportstrom zu schließen, die bereits bei der Aufgabe auf das Förderelement entstehen. Für die Berechnung der Mindestzeit tmind,S bedeutet das, dass dann auch die Mindestzeit tmind,B des vorhergehenden Bausteins berücksichtigt werden muss. Die Mindestzeit des Streckenelements nach (6) bzw. (7) wird als einer der Parameter der Flussgröße zur Be-schreibung des am nachfolgenden Baustein ankommenden Stroms verwendet. Als Parameter der Förderstrecke werden neben der Fördergeschwindigkeit daher auch Angaben zum Transportgut (Abmessungen, Sicherheitsab-stand, Transportrichtung) benötigt. Es bot sich ferner an, eine Typisierung der Förderstrecken hinsichtlich ihrer technischen Realisierung (Rollenförderer, Kettenförderer, Bandförderer usw. mit zugeordneten Parametern) vorzunehmen, um den Aufwand für die Beschreibung der Förderstrecken gering zu halten. Weitere Parameter der Förderstrecken dienen der Aufnahme der Berechnungsergebnisse von vor- bzw. nachge-lagerten Bausteinen und beinhalten: die Länge der Warteschlange (einzelne Kenngrößen wie Mittelwert, 90%-, 95% bzw. 99%-Quantil oder - falls ermittelbar - als statistische Verteilung) die Wartezeit (ebenfalls Kenngrößen oder statistische Verteilung) die (Strecken-)Auslastung Variationskoeffizient für den Güterstrom Für die Darstellung des Materialflusses in einem System werden jeweils einzelne Materialfluss-Relationen betrachtet. Dabei wird angenommen, dass jede Relation an einer Quelle beginnt, an einer Senke endet, dabei mehrere Materialfluss-Komponenten (Bausteine) durchläuft und über den gesamten Verlauf in seiner Größe (Transportmenge) konstant bleibt. Einziger leistungsbestimmender Parameter einer Materialfluss-Relation ist die Transportmenge. Sie wird als zeitabhängige Größe angegeben und entspricht damit dem Durchsatz. Mindestabstand und Variationskoeffizient werden vom erzeugenden Baustein (Quelle) bestimmt, von den weiteren durchlaufenen Bausteinen verändert und über die Förderstrecken jeweils an den nachfolgenden Baustein übertragen. Die verbindenden Förderstrecken werden mit dem jeweiligen Durchsatz „belastet“. Bei Verbindungen, die von mehreren Relationen benutzt werden, summieren sich die Durchsätze, so dass sich unterschiedliche Strecken- und Bausteinbelastungen ergeben. Im Kontext des Baukastensystems werden Metadaten1 verwendet, um die in einem Baustein enthaltenen Infor-mationen über Anwendung, Verfahren und Restriktionen transparent zu machen. Ziel des Baukastensystems ist es je gerade, einfache und leicht handhabbare Berechnungsmodule für einen breiteren Anwenderkreis zur Verfü-gung zu stellen. Dazu sind Beschreibungen erforderlich, mit denen das Leistungsspektrum, mögliche Ergebnisse und Anwendungs- bzw. Einsatzkriterien dokumentiert werden. Aufgabe der Baustein-Bibliothek ist die Sammlung, Verwaltung und Bereitstellung von Informationen über die vorhandenen Bausteine. Damit soll dem Nutzer die Möglichkeit gegeben werden, für seine konkret benötigte Materialflusskomponente einen geeigneten Baustein zur Abbildung zu finden. Mit der Entwicklung weiterer Bausteine für ähnliche Funktionen, aber unterschiedliche Realisierungen (z. B. Regalbediengerät: einfach- oder doppeltiefe Lagerung, mit oder ohne Schnellläuferzone usw.) wächst die Notwendigkeit, die Einsatz- und Leis-tungsmerkmale des Bausteins in geeigneter Weise zu präsentieren. Die Baustein-Bibliothek enthält demnach eine formalisierte Beschreibung der vorhandenen und verfügbaren Bausteine. Die Informationen sind im Wesentlichen unter dem Aspekt einer einheitlichen Identifikation, Infor-mation, Visualisierung und Implementierung der unterschiedlichen Bausteine zusammengestellt worden. Einige der in der Baustein-Bibliothek enthaltenen Metadaten lassen sich durchaus mehreren Rubriken zuordnen. Identifikation und Information Ein Baustein wird durch eine eindeutige Ident-Nummer fixiert. Daneben geben Informationen zum Autor (Ent-wicklung und/oder Implementierung des Verfahrens) und eine Funktionsbeschreibung eine verbale Auskunft über den Baustein. Zusätzlich ist jeder Baustein einem bestimmten Typ zugeordnet entsprechend der Baustein-Klassifizierung (Bearbeiten, Verzweigen, Zusammenführen usw.), über den die Baustein-Auswahl eingegrenzt werden kann. Visualisierung Die Parameter für die Visualisierung beschreiben die Darstellung des Bausteins innerhalb des Baukastensystems (Form, Farbe, Lage der Ein- und Ausgänge des Bausteins, Icons). Implementierung Der Klassenname verweist auf die Implementierung des Bausteins. Zusätzlich benötigte Programm-Ressourcen (externe Bibliotheken wie *.dll , *.tcl o.ä.) können angegeben werden. Weiterhin sind Bezeichnungen und Erläuterungen der erforderlichen technischen Parameter für den Eingabedialog enthalten. Für die Förderstrecken wird ebenfalls eine formalisierte Beschreibung verwendet. Sie verweist jedoch nicht wie die Baustein-Bibliothek auf Software-Ressourcen, sondern enthält nur eine Reihe technischer Parameter, die für das Übertragungsverhalten der Förderstrecke eine Rolle spielen (Fördergeschwindigkeit, Arbeitsweise akkumu-lierend, Ausrichtung des Transportguts). Die Einträge lassen sich als Musterdatensätze (Template) für die Bau-stein-Verbindungen auffassen, um bestimmte, häufig vorkommende fördertechnische Lösungen diesen Verbin-dungen in einfacher Weise zuordnen zu können. Die Angaben sind aber im konkreten Anwendungsfall änderbar. Angaben zum Transportgut beschränken sich auf die Abmessungen der Transporteinheiten (Länge, Breite) und den erforderlichen Sicherheitsabstand (s0). Als Grundform wird von einer Standard-Euro-Palette (1200x800 mm) ausgegangen, es lassen sich aber auch Güter mit anderen Maßen hinzufügen. Die Angaben zum Transportgut werden in Verbindung mit den Parametern der Förderstrecken (Ausrichtung des Gutes längs oder quer) ausgewertet, so dass sich die jeweiligen Mindestabstände (Gleichung 6 bzw. 7) sowie der maximale Durchsatz Qmax als Grundlage für die Berechnung der Streckenauslastung bestimmen lassen. Das Gesamtkonzept des Baukastensystems ist in Abbildung 4 dargestellt. Es besteht im Wesentlichen aus drei Bereichen: Bausteinerstellung Bausteinverwaltung (Bibliotheken) Baukasten (Benutzeroberfläche) Dabei ist der Bereich der Bausteinerstellung nicht unmittelbarer Bestandteil der realisierten Lösung. Sie ist vielmehr die Quelle für die Bausteine, die über die jeweiligen Metadaten in einer Baustein-Bibliothek verwaltet und bereitgestellt werden. Die Verwaltung von Bausteinen und Förderstrecken ist die Umsetzung der Baustein-Bibliothek und (im erwei-terten Sinne) der Definitionen für die Förderstrecken. Der Modellbaukasten selbst stellt die Grafische Nutzeroberfläche dar (Abb. 11) und enthält den interaktiven, grafischen Modelleditor, die Auswahlelemente (Werkzeugkoffer bzw. -filter) für Bausteine und Förderstrecken, tabellarische Übersichten für alle Bausteine, Förderstrecken und Materialflussrelationen sowie Eingabedialoge für Bausteine, Förderstrecken und Materialflussrelationen. Die Entwicklung eines Modells mit dem Baukastensystem erfolgt prinzipiell in drei Schritten: Schritt eins umfasst die Anordnung und Definition der Bausteine. Der Modellbaukasten bietet die Möglich-keit, einen bestimmten Baustein direkt (z.B. Ausschleusung) oder unter Nutzung eines Bausteinfilters (z.B. alle Verzweigungselemente) auszuwählen und im grafischen Editor mittels Mausklick zu platzieren . An-schließend erfolgt im Dialog die notwendige Parametrierung des Bausteins. Dies beinhaltet sowohl die An-gaben zur Visualisierung (Drehung, Spiegelung) als auch die für die Dimensionierung erforderlichen techni-schen Parameter. Die für jeden Baustein benötigten Leistungsanforderungen (Durchsatz, lokale Transport-matrix) werden allerdings nicht direkt angegeben, sondern aus den Beziehungen zu den vor- und nachgela-gerten Bausteinen automatisch ermittelt (Übertragungsfunktion der Förderstrecken). Danach erfolgt in einem zweiten Schritt die Definition von Verbindung zwischen den Bausteinen (Förder-strecken): Das Erzeugen der Bausteinverbindungen ist ebenfalls ganz einfach zu realisieren. Nach Auswahl der zu Grunde liegenden Fördertechnik (z.B. Rollenförderer) wird durch Ziehen des Mauszeigers von einem nicht belegten Ausgang zu einem nicht belegten Eingang eines Bausteins die entsprechende Förderstrecke erzeugt. In einem abschließenden Dialog können die gewählten Voreinstellungen zum Transportgut, zum Förderertyp usw. bestätigt oder gegebenenfalls korrigiert werden. Außerdem kann die Kapazität der Förder-strecke definiert werden. Dabei geht es weniger um die Länge des Förderers als viel mehr um die Anzahl der vorgesehenen Puffer- oder Stauplätze im Zusammenhang mit den zu berechnenden Warteschlangenlän-gen. Abschließend wird im dritten Schritt der Materialfluss definiert: Ein Materialstrom ist jeweils eine Relation, die an einer Quelle beginnt, an einer Senke endet und dabei mehrere Bausteine durchläuft. Da die Förder-strecken zu diesem Zeitpunkt bereits definiert sein müssen, kann automatisch ein möglicher Weg zwischen Quelle und Senke gefunden werden. Ähnlich wie bei Routenplanungssystemen kann dabei durch zusätzliche Angabe von Zwischenpunkten (via) der automatisch vorgeschlagene Transportweg verändert und angepasst werden (Abb. 5). Nach Bestätigung des Transportweges und damit der unterwegs zu passierenden Bausteine erfolgt in einem Dialog die Parametrierung (Transportmenge pro Stunde) für diese Relation. Die Elemente des Transportweges (die benutzten Förderstrecken) werden mit dem entsprechenden Durchsatz „belastet“. Nach Abschluss der Modellierung kann die Berechnung ausgeführt werden. Im Ergebnis werden Kennzahlen bestimmt und im Baukasten in verschiedener Form visualisiert, um eine Bewertung der Ergebnisse vornehmen zu können. Eine Übersicht Fehlermeldungen listet die Problemelemente auf. Dabei wird die Schwere eines Problems farb-lich hervorgehoben: fataler Fehler (rot): entsteht z.B. bei Überlastung eines Bausteins – die geforderte Leistung für einen Bau-stein (und damit die des Gesamtsystems) kann nicht erbracht werden. lokaler Fehler (orange): entsteht z.B. bei permanenter Blockierung – die mittlere Warteschlange vor einem Baustein ist größer als dessen vorgesehene Kapazität. Warnung (hellgelb): bei teilweiser Blockierung – das 90%-Quantil der Warteschlange ist größer als die Ka-pazität der Förderstrecke, es ist daher zeitweise mit Blockierungen (und damit Behinderungen des vorherge-henden Bausteins) zu rechnen. Information (weiß): wird immer dann erzeugt, wenn Erwartungswerte für die Wartezeit oder Warteschlange mit einem G/G/1-Bedienmodell berechnet werden. Die Lösungen dieser Näherungsgleichungen sind im All-gemeinen nicht sehr genau, dienen aber als Abschätzung für die sonst fehlenden Kennwerte. Entsprechend der berechneten Auslastung werden die Bausteine im Modelleditor mit einer Farbabstufung von Grün nach Rot markiert, Bausteine und Förderstrecken leuchten rot bei Überlastung. Die dargestellten Ergebnisse im Modelleditor zu Bausteinen und Förderstrecken sind umschaltbar durch den Nutzer (Abb. 6). Je nach den in den Bausteinen hinterlegten Berechnungen sind jedoch nicht immer alle Kenn-größen verfügbar. Die Implementierung des Baukastensystems wurde mit Java (Release 1.5) vorgenommen. Für das Kernsystem wird dabei das in Abbildung 7 dargestellte Klassen-Konzept umgesetzt. Ausgehend von einer allgemeinen Klasse (Object3D) für Visualisierung von und Interaktionen mit grafischen Objekten wurden für Bausteine (AbstractNode) und Förderstrecken (Connection) die jeweiligen Klassen abgelei-tet. Für die Förderstecken ergibt sich dabei eine weitgehend einheitliche Beschreibungsform, die lediglich durch die Parametrierung (Vorlagen in der Förderstrecken-Bibliothek als XML-Datei) auf den konkreten Einsatz im Modell des Materialflusssystems angepasst werden muss. Anders verhält es sich mit den Bausteinen: Durch die mögliche Vielfalt von Bausteinen und den ihnen zu Grunde liegenden Berechnungsverfahren muss es auch eine Vielzahl von Klassen geben. Um jedoch für jeden belie-bigen Baustein den Zugriff (Bereitstellung von Eingangsdaten, Berechnung und Bereitstellung der Ergebnisse) in einer identischen Weise zu gewährleisten, muss es dafür eine nach außen einheitliche Schnittstelle geben. Die Java zu Grunde liegende objektorientierte Programmierung bietet mit dem Konzept der „abstrakten Klasse“ eine Möglichkeit, dies in einfacher Weise zu realisieren. Dazu wird mit AbstractNode quasi eine Vorlage entwi-ckelt, von der alle implementierten Baustein-Klassen abgeleitet sind. AbstractNode selbst enthält alle Methoden, mit denen Baustein-Daten übernommen oder übergeben, die jeweiligen Visualisierungen vorgenommen, die baustein-internen Verbindungen (lokale Transportmatrix) verwaltet und Ein- und Ausgänge mit den zugehörigen Förderstrecken verbunden werden. Die für den Aufruf der eigentlichen Berechnungen in den Bausteinen ver-wendeten Methoden sind deklariert, aber nicht implementiert (sogenannte abstrakte Methoden). Ein Baustein wird von AbstractNode abgeleitet und erbt damit die implementierten Methoden, lediglich die abstrakten Methoden, die die Spezifik des Bausteins ausmachen, sind noch zu implementieren. Um neue Bausteine zu erzeugen, wird Unterstützung in Form eines Bildschirmdialogs angeboten (Abb. 8). Danach sind die entsprechenden Angaben zu den Metadaten, zur Struktur und zur Visualisierung des Bausteins, die Eingangsparameter (Name und Erläuterung) sowie die berechenbaren Ergebnisse (z.B. Auslastung, Quantile der Warteschlangenlänge, aber keine Aussage zu Wartezeiten usw.) anzugeben. Nach Bestätigung der Daten und diversen Syntax- bzw. Semantik-Kontrollen wird der Baustein in der Bibliothek registriert, ein Sourcecode für den neuen Baustein generiert und kompiliert. Der Baustein selbst ist damit formal korrekt und kann sofort verwendet werden, liefert aber noch keine verwertbaren Ergebnisse, weil natürlich die Implementierung des Berechnungsverfahrens selbst noch aussteht. Das muss in einem zweiten Schritt im Rah-men der üblichen Software-Entwicklung nachgeholt werden. Dazu sind die Berechnungsverfahren zu implemen-tieren und die Bausteinschnittstellen zu bedienen. Der generierte Java-Code enthält in den Kommentaren eine Reihe von Hinweisen für den Programmierer, so dass sich problemlos die Schnittstellen des Bausteins program-mieren lassen (Abb. 9). In einem Beispiel werden ein Hochregallager (3 Regalbediengeräte) und zwei Kommissionierplätze durch ein Transportsystem verbunden. Mit der Einlastung von Kommissionieraufträgen werden im Simulationsmodell die entsprechenden Transportaufträge generiert und abgearbeitet (Abb. 10). Dabei können Systemzustände (z.B. Warteschlangen) protokolliert und statistisch ausgewertet werden. Ein entsprechendes Modell für den Baukasten ist in Abbildung 11 dargestellt. Der Vorteil des Baukastensystems liegt selbst bei diesem recht einfachen Beispiel im Zeitvorteil: Für Erstellung und Test des Simulationsmodells und anschließende Simulationsläufe und Auswertungen wird ein Zeitaufwand von ca. 4-5 Stunden benötigt, das Baukastenmodell braucht für Erstellung und korrekte Parametrierung weniger als 0,5 Stunden, die Rechenzeit selbst ist vernachlässigbar gering. Sollte im Ergebnis der Untersuchungen eine Änderung des Materialflusssystems notwendig werden, so führt das im Simulationsmodell teilweise zu erheblichen Änderungen (Abläufe, Steuerungsstrategien, Auswertungen) mit entsprechendem Zeitaufwand. Im Baukasten können dagegen in einfacher Weise zusätzliche Bausteine eingefügt oder vorhandene ersetzt werden durch Bausteine mit geänderter Funktion oder Steuerung. Strukturelle Änderungen am Materialflusssys-tem sind also mit deutlich geringerem Aufwand realisierbar. In [Markwardt2003] werden für mehrere Strukturen von Materialflusskomponenten Fehlerbetrachtungen über die Genauigkeit der mittels neuronaler Netze untersuchten Systeme gegenüber den Simulationsergebnissen vorge-nommen. Danach ergibt sich beispielsweise für das 90%-Quantil der Warteschlange eine Abweichung, die mit 90% Sicherheit kleiner als 0,3 Warteplätze ist. Bei den Variationskoeffizienten des Abgangsstroms betragen die absoluten Abweichungen mit 90% Sicherheit nicht mehr als 0,02 bis 0,05 (in Abhängigkeit vom betrachteten Baustein). Daraus wird die Schlussfolgerung abgeleitet, dass die durch Verknüpfung neuronaler Netze gewonne-nen Aussagen sehr gut mit statistischen Ergebnissen diskreter Simulation übereinstimmen und eine Planungssi-cherheit ermöglichen, die für einen Grobentwurf von Materialflusssystemen weit über die heute gebräuchlichen statischen Berechnungsverfahren hinausgehen. Im konkreten Beispiel wurde die Zahl der Pufferplätze vor den Kommissionierern (Work1 bzw. Work2) zu-nächst auf 3 begrenzt. Die Berechnung im Baukasten ergab dabei in beiden Fällen Fehlermeldungen mit dem Hinweis auf Blockierungen (Abb. 12, links). Diese bestätigten sich auch im Simulationsmodell (Abb. 12, rechts). Nach Vergr��ßerung der Pufferstrecken auf 7 Plätze ist die Blockierungsgefahr auf ein vertretbares Minimum reduziert, und die mit dem Baukasten berechneten Kenngrößen können durch die Simulation prinzipiell bestätigt werden. it dem offenen Baukastensystem ist eine schnelle, einfache, sichere und damit wirtschaftlichere Dimensionie-rung von Materialflusssystemen möglich. Für den Anwender sind sofort statistisch abgesicherte und ausreichend genaue Ergebnisse ohne aufwändige Berechnungen verfügbar, womit sich die Planungsqualität erhöht. Besonde-re Anforderungen an Hard- und Software sind dabei nicht erforderlich. Für die Dimensionierung der einzelnen Bausteine stehen Informationen aus der Bedienungstheorie, Simulati-onswissen und numerische Verfahren direkt und anwendungsbereit zur Verfügung. Es erlaubt eine deutlich vereinfachte Berechnung von statistischen Kenngrößen wie Quantile (statistische Obergrenzen) der Pufferbelegung, Auslastung von Einzelelementen und mittlere Auftragsdurchlaufzeit bei gleichzeitig erhöhter Genauigkeit. Ferner ist das Baukastensystem offen für eine Erweiterung um neue Bausteine, die neue oder spezielle fördertechnische Elemente abbilden oder zusätzliche Informationen liefern können. Da auch komplexe Materialflusssysteme immer wieder aus einer begrenzten Anzahl unterschiedlicher Kompo-nenten bestehen, können durch die Verknüpfung der Einzelbausteine auch Gesamtsysteme abgebildet werden. Die Verknüpfung der Bausteine über eine einheitliche Schnittstelle erlaubt Aussagen über das Verhalten der Gesamtanlage. Bei Einsatz des Baukastensystems sind in einer solchen Verknüpfung jederzeit Parameterände-rungen möglich, deren Folgen sofort sichtbar werden. Die Zeit bis zum Vorliegen gesicherter, ausreichend genauer Ergebnisse wird dadurch drastisch verkürzt. Damit erwächst Variantenuntersuchungen bereits in frühen Planungsphasen neues Potential und kann zum entscheidenden Wettbewerbsvorteil werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A characterization is provided for the von Mises–Fisher random variable, in terms of first exit point from the unit hypersphere of the drifted Wiener process. Laplace transform formulae for the first exit time from the unit hypersphere of the drifted Wiener process are provided. Post representations in terms of Bell polynomials are provided for the densities of the first exit times from the circle and from the sphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we propose an exact efficient simulation algorithm for the generalized von Mises circular distribution of order two. It is an acceptance-rejection algorithm with a piecewise linear envelope based on the local extrema and the inflexion points of the generalized von Mises density of order two. We show that these points can be obtained from the roots of polynomials and degrees four and eight, which can be easily obtained by the methods of Ferrari and Weierstrass. A comparative study with the von Neumann acceptance-rejection, with the ratio-of-uniforms and with a Markov chain Monte Carlo algorithms shows that this new method is generally the most efficient.