984 resultados para CURRENT TRANSIENT SPECTROSCOPY
Resumo:
The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.
Resumo:
Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.
Resumo:
A general electrical model of a piezoelectric transducer for ultrasound applications consists of a capacitor in parallel with RLC legs. A high power voltage source converter can however generate significant voltage stress across the transducer that creates high leakage currents. One solution is to reduce the voltage stress across the piezoelectric transducer by using an LC filter, however a main drawback is changing the piezoelectric resonant frequency and its characteristics. Thereby it reduces the efficiency of energy conversion through the transducer. This paper proposes that a high frequency current source converter is a suitable topology to drive high power piezoelectric transducers efficiently.
Resumo:
Three dimensional cellular models that mimic disease are being increasingly investigated and have opened an exciting new research area into understanding pathomechanisms. The advantage of 3D in vitro disease models is that they allow systematic and in-depth studies of physiological and pathophysiological processes with less costs and ethical concerns that have arisen with animal models. The purpose of the 3D approach is to allow crosstalk between cells and microenvironment, and with cues from the microenvironment, cells can assemble their niche similar to in vivo conditions. The use of 3D models for mimicking disease processes such as cancer, osteoarthritis etc., is only emerging and allows multidisciplinary teams consisting of tissue engineers, biologist biomaterial scientists and clinicians to work closely together. While in vitro systems require rigorous testing before they can be considered as replicates of the in vivo model, major steps have been made, suggesting that they will become powerful tools for studying physiological and pathophysiological processes. This paper aims to summarize some of the existing 3D models and proposes a novel 3D model of the eye structures that are involved in the most common cause of blindness in the Western World, namely age-related macular degeneration (AMD).
Resumo:
The regulation of overweight trucks is of increasing importance. Quickly growing heavy vehicle volumes over-proportionally contribute to roadway damage. Raising maintenance costs and compromised road safety are also becoming a major concern to managing agencies. Minimizing pavement wear is done by regulating overloaded trucks on major highways at weigh stations. However, due to lengthy inspections and insufficient capacities, weigh stations tend to be inefficient. New practices, using Radio Frequency Identification (RFID) transponders and weigh-in-motion technologies, called preclearance programs, have been set up in a number of countries. The primary aim of this study is to investigate the current issues with regard to the implementation and operation of the preclearance program. The State of Queensland, Australia, is used as a case study. The investigation focuses on three aspects; the first emphasizes on identifying the need for improvement of the current regulation programs in Queensland. Second, the operators of existing preclearance programs are interviewed for their lessons-learned and the marketing strategies used for promoting their programs. The trucking companies in Queensland are interviewed for their experiences with the current weighing practices and attitudes toward the potential preclearance system. Finally, the estimated benefit of the preclearance program deployment in Queensland is analyzed. The penultimate part brings the former four parts together and provides the study findings and recommendations. The framework and study findings could be valuable inputs for other roadway agencies considering a similar preclearance program or looking to promote their existing ones.
Resumo:
This report presents a snapshot from work which was funded by the Queensland Injury Prevention Council in 2010-11 titled “Feasibility of Using Health Data Sources to Inform Product Safety Surveillance in Queensland children”. The project provided an evaluation of the current available evidence-base for identification and surveillance of product-related injuries in children in Queensland and Australia. A comprehensive 300 page report was produced (available at: http://eprints.qut.edu.au/46518/) and a series of recommendations were made which proposed: improvements in the product safety data system, increased utilisation of health data for proactive and reactive surveillance, enhanced collaboration between the health sector and the product safety sector, and improved ability of health data to meet the needs of product safety surveillance. At the conclusion of the project, a Consumer Product Injury Research Advisory group (CPIRAG) was established as a working party to the Queensland Injury Prevention Council (QIPC), to prioritise and advance these recommendations and to work collaboratively with key stakeholders to promote the role of injury data to support product safety policy decisions at the Queensland and national level. This group continues to meet monthly and is comprised of the organisations represented on the second page of this report. One of the key priorities of the CPIRAG group for 2012 was to produce a snapshot report to highlight problem areas for potential action arising out of the larger report. Subsequent funding to write this snapshot report was provided by the Institute for Health and Biomedical Innovation, Injury Prevention and Rehabilitation Domain at QUT in 2012. This work was undertaken by Dr Kirsten McKenzie and researchers from QUT's Centre for Accident Research and Road Safety - Queensland. This snapshot report provides an evidence base for potential further action on a range of children’s products that are significantly represented in injury data. Further information regarding injury hazards, safety advice and regulatory responses are available on the Office of Fair Trading (OFT) Queensland website and the Product Safety Australia websites. Links to these resources are provided for each product reviewed.
Resumo:
Research on Enterprise Resource Planning (ERP) Systems is becoming a well-established research theme in Information Systems (IS) research. Enterprise Resource Planning Systems, given its unique differentiations with other IS applications, have provided an interesting backdrop to test and re-test some of the key and fundamental concepts in IS. While some researchers have tested well-established concepts of technology acceptance, system usage and system success in the context of ERP Systems, others have researched how new paradigms like cloud computing and social media integrate with ERP Systems. Moreover, ERP Systems provided the context for cross disciplinary research such as knowledge management, project management and business process management research. Almost after two-decades since its inception in IS research, this paper provides a critique of 198 papers published on ERP Systems since 2006-2012. We observe patterns on ES research, provide comparisons to past studies and provide future research directions.
Resumo:
Henmilite is a triclinic mineral with the crystal structure consisting of isolated B(OH)4 tetrahedra, planar Cu(OH)4 groups and Ca(OH)3 polyhedra. The structure can also be viewed as having dimers of Ca polyhedra connected to each other through 2B(OH) tetrahedra to form chains parallel to the C axis. The structure of the mineral has been assessed by the combination of Raman and infrared spectra. Raman bands at 902, 922, 951, and 984 cm−1 and infrared bands at 912, 955 and 998 cm−1 are assigned to stretching vibrations of tetragonal boron. The Raman band at 758 cm−1 is assigned to the symmetric stretching mode of tetrahedral boron. The series of bands in the 400–600 cm−1 region are due to the out-of-plane bending modes of tetrahedral boron. Two very sharp Raman bands are observed at 3559 and 3609 cm−1. Two infrared bands are found at 3558 and 3607 cm−1. These bands are assigned to the OH stretching vibrations of the OH units in henmilite. A series of Raman bands are observed at 3195, 3269, 3328, 3396, 3424 and 3501 cm−1 are assigned to water stretching modes. Infrared spectroscopy also identified water and OH units in the henmilite structure. It is proposed that water is involved in the structure of henmilite. Hydrogen bond distances based upon the OH stretching vibrations using a Libowitzky equation were calculated. The number and variation of water hydrogen bond distances are important for the stability off the mineral.
Resumo:
Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm−1, assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm−1 is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure.
Resumo:
Monetite is a phosphate mineral formed by the reaction of the chemicals in bat guano with calcite substrates and is commonly found in caves. The analog of the mineral monetite CaHPO4 has been synthesized and the Raman and infrared spectra of the natural monetite originating from the Murra-el-elevyn Cave, Eucla, Western Australia, compared. Monetite is characterized by a complex set of phosphate bands that arise because of two sets of pairs of phosphate units in the unit cell. Raman and infrared bands are assigned to HPO4(2-), OH stretching and bending vibrations. Infrared bands at 1346 and 1402 cm−1 are assigned to POH deformation modes. Vibrational spectroscopy confirms the presence of monetite in the cave system.
Resumo:
Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed.
Resumo:
This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.
Resumo:
In this work, we present an investigation on Pt/graphene/GaN devices for hydrogen gas sensing applications. The graphene layer was deposited on GaN substrate using a chemical vapour deposition (CVD) technique and was characterised via Raman and X-ray photoelectron spectroscopy. The current-voltage (I-V) and dynamic response of the developed devices were investigated in forward and reverse bias operation at an optimum temperature of 160°C. Voltage shifts of 661.1 and 484.9 mV were recorded towards 1% hydrogen at forward and reverse constant bias current of 1 mA, respectively.
Resumo:
Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.