955 resultados para phase inversion method
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Barium zirconium titanate (BZT) ceramics were prepared by mixed oxide method. X-ray diffraction showed the presence of a single phase while Raman scattering confirmed structural transitions as a function of different Zr/Ti ratio. The addition of Zr strongly influenced the crystal structure and electrical properties of the ceramics. A typical hysteresis loops were observed for all investigated compositions. BZT ceramics with 15 mol% Zr have shown a ferroelectric to paraelectric transition at around 77 degrees C. (C) 2007 Published by Elsevier B.V.
Resumo:
Single-phase Ba0.5Sr0.5(Ti0.80Sn0.20)O-3 (BST:Sn) powders with perovskite structure were prepared by the soft chemical method. Infrared data indicates that the BST:Sn powder is carbonate free while Raman analysis has shown that the transversal (TO) and longitudinal (LO) optical modes tend to disappear with tin addition. The electron diffraction pattern of the BST:Sn powder showed an interplanar distance of 3.94 angstrom characteristic of the pseudo-cubic structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Precursor solutions for Pb(Mg1/3Nb2/3)O-3 (PMN) synthesis were obtained by Pechini's method. The influence of the concentration of organic materials on the phase formation has been studied. For this purpose, PMN solutions were prepared with different precursors and were characterized by thermogravimetric and differential thermal analysis. The obtained solutions were deposited onto a Si (100) substrate by dip coating and pre-treated in a hot plate at 300 degreesC for 1 h. The films were annealed at 600, 700, 800 and 900 degreesC for 1 h and characterized by X-ray diffraction. The perovskite phase was formed after annealing at 600 and 700 degreesC when the solution of PMN was prepared with a lower amount of organic material and starting with mobium oxide. By increasing the temperature to 800 or 900 degreesC, only the formation of pyrochlore phase was observed. With the solution prepared from mobium ethoxide, only the presence of pyrochlore phase was observed independently of the annealing temperature. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Al2O3 and Al2-x Cr (x) O-3 (x = 0.01, 0.02 and 0.04) powders have been synthesized by the polymeric precursors method. A study of the structural evolution of crystalline phases corresponding to the obtained powders was accomplished through X-Ray Diffraction and UV-vis spectroscopy (reflectance spectra and CIEL* a*b* color data). The obtained results allow to identify the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 powder was obtained after heat treatment at 1050 degrees C for 2 h. The results show that the green to red color transition and ruby luminescence lines observed for the powders of Al2-x Cr (x) O-3 are related to the gamma to alpha-Al2O3 phase transition and the temperature and time range for such transition depends on the chromium content.
Resumo:
The sintering behavior of SnO2-CuO system has been investigated for two preparation methods and as a function of antimony concentration. A chemical preparation (Pechini's method) resulted in powders with smaller particle sizes than for a conventional oxide mixture. This led to smaller grain sizes in Pechini's method ceramics. The microstructures were heterogeneous in both systems, showing grain coarsening. The densification was aided by liquid phase formation, due to copper, in both systems, but the temperature of maximum shrinkage rate was larger for the Pechini's method ceramic because copper had to diffuse to the grain surface. Independently of the preparation method, antimony did not aid densification, and increasing its concentration led to a higher densification temperature and lower shrinkage rate. (C) 2003 Kluwer Academic Publishers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)