941 resultados para greenhouse emissions
Resumo:
This paper describes a computational study of lean premixed high pressure methane-air flames, using Computational Fluid Dynamics (CFD) together with a reactor network approach. A detailed chemical reaction mechanism is employed to predict pollutant concentrations, placing emphasis on nitrogen oxide emissions. The reacting flow field is divided into separate zones in which homogeneity of the physical and chemical conditions prevails. The defined zones are interconnected forming an Equivalent Reactor Network (ERN). Three flames are examined for which experimental data is available. Flame A is characterised by an equivalence ratio of 0.43 while Flames B and C are richer with equivalence ratios of 0.5 and 0.56 respectively. Computations are performed for a range of operating conditions, quantifying the effect in the emitted NOx levels. Model predictions are compared against the available experimental data. Sensitivity analysis is performed to investigate the effect of the network size, in order to define the optimum number of reactors for accurate predictions of the species mass fractions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.
Resumo:
We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon emissions from a country perspective, tracking the rise of China and other developing countries. The results show not only a rise in the economic fortunes of the newly industrializing nations, but also a significant rise in global pollution, particularly air pollution and CO2 emissions largely from coal use, which alter and even reverse previous global trends. In the second part, we change perspective and quantitatively evaluate two important technical strategies to reduce pollution and carbon emissions: energy efficiency and materials recycling. We subdivide the manufacturing sector on the basis of the five major subsectors that dominate energy use and carbon emissions: (a) iron and steel, (b) cement, (c) plastics, (d) paper, and (e) aluminum. The analysis identifies technical constraints on these strategies, but by combined and aggressive action, industry should be able to balance increases in demand with these technical improvements. The result would be high but relatively flat energy use and carbon emissions. The review closes by demonstrating the consequences of extrapolating trends in production and carbon emissions and suggesting two options for further environmental improvements, materials efficiency, and demand reduction. © 2013 by Annual Reviews. All rights reserved.
Resumo:
The global trend towards urbanization means that over half of the world's population now lives in cities. Cities use energy in different proportions to national energy use averages, typically corresponding to whether a country is industrialized or developing. Cities in industrialized countries tend to use less energy per capita than the national average while cities in developing countries use more. This paper looks at existing World Bank data in respect to urban energy consumption, the emissions inventory work done by New York City, and discusses how this data highlights the need for a focus on: energy policy for buildings in industrialized cities; masterplanning and new construction standards in developing cities; and how urban energy policy can become more effective in reducing urban greenhouse gas emissions.
Resumo:
This work analysed the cost-effectiveness of avoiding carbon dioxide (CO2) emissions using advanced internal combustion engines, hybrids, plug-in hybrids, fuel cell vehicles and electric vehicles across the nine UK passenger vehicles segments. Across all vehicle types and powertrain groups, minimum installed motive power was dependent most on the time to accelerate from zero to 96.6km/h (60mph). Hybridising the powertrain reduced the difference in energy use between vehicles with slow (t z - 60 > 8 s) and fast acceleration (t z - 60 < 8 s) times. The cost premium associated with advanced powertrains was dependent most on the powertrain chosen, rather than the performance required. Improving non-powertrain components reduced vehicle road load and allowed total motive capacity to decrease by 17%, energy use by 11%, manufacturing cost premiums by 13% and CO2 emissions abatement costs by 15%. All vehicles with advanced internal combustion engines, most hybrid and plug-in hybrid powertrains reduced net CO2 emissions and had lower lifetime operating costs than the respective segment reference vehicle. Most powertrains using fuel cells and all electric vehicles had positive CO2 emissions abatement costs. However, only vehicles using advanced internal combustion engines and parallel hybrid vehicles may be attractive to consumers by the fuel savings offsetting increases in vehicle cost within two years. This work demonstrates that fuel savings are possible relative to today's fleet, but indicates that the most cost-effective way of reducing fuel consumption and CO2 emissions is by advanced combustion technologies and hybridisation with a parallel topology. © 2014 Elsevier Ltd.
Resumo:
Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders' demand for economically sustainable brownfield remediation and "green" practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the "sustainable remediation" concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making. The paper concludes that "sustainability" is becoming a new imperative in the environmental remediation field, with important implications for regulators, liability owners, consultants, contractors, and technology vendors. © 2014 Elsevier Ltd.
Resumo:
Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit OR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence of GaAs0.973Sb0.022N0.005 is investigated at different temperatures and pressures. Both the alloy band edge and the N-related emissions, which show different temperature and pressure dependences, are observed. The pressure coefficients obtained in the pressure range 0-1.4GPa for the band edge and N-related emissions are 67 and 45 meV/GPa, respectively. The N-related emissions shift to a higher energy in the lower pressure range and then begin to redshift at about 8.5 GPa. This redshift is possibly caused by the increase of the X-valley component in the N-related states with increasing pressure.
Resumo:
The temperature dependences of the orange and blue emissions in 10, 4.5, and 3 nm ZnS:Mn nanoparticles were investigated. The orange emission is from the T-4(1)-(6)A(1) transition of Mn2+ ions and the blue emission is related to the donor-acceptor recombination in the ZnS host. With increasing temperature, the blue emission has a red-shift. On the other hand, the peak energy of the orange emission is only weakly dependent on temperature. The luminescence intensity of the orange emission decreases rapidly from 110 to 300 K for the 10 nm sample but increases obviously for the 3 nm sample, whereas the emission intensity is nearly, independent of temperature for the 4.5 nm sample. A thermally activated carrier-transfer model has been proposed to explain the observed abnormal temperature behaviour of the orange emission in ZnS:Mn nanoparticles.
Resumo:
Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.
Resumo:
A novel Nd3+-doped lead fluorosilicate glass (NPS glass) is prepared by a two-step melting process. Based on the absorption spectrum a Judd-Ofelt theory analysis is made. The emission line width of NPS glass is 44.2nm. The fluorescence decay lifetime of the 4F3/2 level is 586±20μsec, and the stimulated emission cross-section is 0.87×10-20cm2 at 1056nm. A laser oscillation is occurred at 1062nm when pumped by 808nm Diode Laser. The slope efficiency is 23.7% with a 415mJ threshold. It is supposed that NPS glass is a good candidate for using in ultra-short pulse generation and amplification by the broad emission bandwidth and long fluorescence lifetime.
Resumo:
The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are from the intrinsic emissions in the studied dilute GaAsN alloys rather than some localized exciton emissions in the GaAsN alloys. The results show that the nitrogen-induced E E+ and E0 + A0 transitions in GaAsN alloys intersect at a nitrogen content of about 0.16%. It is demonstrated that a small amount of isoelectronic doping combined with micro-photoluminescence allows direct observation of above band gap transitions that are not usually accessible in photoluminescence.