992 resultados para VISIBLE SPECTRA
Resumo:
Si-doped ZnO can be synthesized on the surface of the early grown Zn2SiO4 nanostructures and form core/ shell coaxial heterostructure nanobelts with an epitaxial orientation relationship. A parallel interface with a periodicity array of edge dislocations and an inclined interface without dislocations can be formed. The visible green emission is predominant in PL spectra due to carrier localization by high density of deep traps from complexes of impurities and defects. Due to band tail localization induced by composition and defect fluctuation, and high density of free-carriers donated by doping, especially the further dissociation of excitons into free-carriers at high excitation intensity, the near-band-edge emission is dominated by the transition of free-electrons to free-holes, and furthermore, exhibits a significant excitation power-dependent red-shift characteristic. Due to the structure relaxation and the thermalization effects, carrier delocalization takes place in deep traps with increasing excitation density. As a result, the green emission passes through a maximum at 0.25I(0) excitation intensity, and the ratio of the violet to green emission increases monotonously as the excitation laser power density increases. The violet and green emission of ZnO nanostructures can be well tuned by a moderate doping and a variation in the excitation density.
Resumo:
High-power and broadband quantum-dot (QD) superluminescent light-emitting diodes are realized by using a combination of self-assembled QDs with a high density, large inhomogeneous broadening, a tapered angled pump region, and etched V groove structure. This broad-area device exhibits greater than 70-nm 3-dB bandwidth and drive current insensitive emission spectra with 100-mW output power under continuous-wave operation. For pulsed operation, greater than 200-mW output power is obtained.
Resumo:
We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111) B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Perot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Perot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field. (C) 2009 Optical Society of America
Resumo:
Resonant tunnelling diodes with different structures were grown. Their photoluminescence spectra were investigated. By contrast, the luminescence in the quantum well is separated from that of other epilayers. The result is obtained that the exciton of the luminescence in the quantum well is partly come from the cap layer in the experiment. So the photoluminescence spectrum is closely related to the electron transport in the resonant tunnelling diode structure. This offers a method by which the important performance of resonant tunnelling diode could be forecast by analysing the integrated photoluminescence intensities.
Resumo:
A gain measurement technique, based on Fourier series expansion of periodically extended single fringe of the amplified spontaneous emission spectrum, is proposed for Fabry-Perot semiconductor lasers. The underestimation of gain due to the limited resolution of the measurement system is corrected by a factor related to the system response function. The standard deviations of the gain-reflectivity product under low noise conditions are analyzed for the Fourier series expansion method and compared with those of the Hakki-Paoli method and Cassidy's method. The results show that the Fourier series expansion method is the least sensitive to noise among the three methods. The experiment results obtained by the three methods are also presented and compared.
Resumo:
The composite films of the nanocrystalline GaAs1-xSbx-SiO2 have been successfully deposited on glass and GaSb substrates by radio frequency magnetron co-sputtering. The 10K photoluminescence (PL) properties of the nanocrystalline GaAs1-xSbx indicated that the PL peaks of the GaAs1-xSbx nanocrystals follow the quantum confinement model very closely. Optical transmittance spectra showed that there is a large blue shift of optical absorption edge in nanocrystalline GaAs1-xSbx-SiO2 composite films, as compared with that of the corresponding bulk semiconductor, which is due to the quantum confinement effect.
Resumo:
ZnO thin films were prepared on Si (1 11) substrates at various temperatures from 250 to 700 degrees C using pulsed laser deposition (PLD) technique in order to investigate the structural and optical properties of the films. The structural and morphological properties of the films were investigated by XRD and SEM measurements, respectively. The quality of the films was improved with the increase of the temperature. By XRD patterns the FWHMs of the (0 0 2) peaks of the ZnO films became narrower when the temperatures were above 500 degrees C. The FWHMs of the peaks of (0 0 2) of the films were as narrow as about 0. 19 degrees when films were grown at 650 and 700 degrees C. This indicates the superior crystallinity of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The two strongest UV peaks were found at 377.9 nm from ZnO films grown at 650 and 700 degrees C. This result is consistent with that of the XRD investigation. Broad bands in visible region from 450 to 550 nm were also observed. Our works suggest that UV emissions have close relations with not only the crystallinity but also the stoichiometry of the ZnO films. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V.
Resumo:
p(+)-pi-n(-)-n(+) ultraviolet photodetectors based on 4H-SiC homoepilayers have been presented. The growth of the 4H-SiC homoepilayers was carried out in a LPCVD system. The size of the active area of the photodetectors was 300 x 300 mu m(2). The dark and illuminated I-V characteristics had been measured at reverse biases form 0 to 20 V at room temperature, and the illuminated current was at least two orders of magnitude than that of dark current below 13 V bias. The peak value zones of the photoresponse were located at 280-310 nm at different reverse biases, and the peak value located at 300 nm was 100 times greater than the cut-off response value in 380 nm at a bias of 10V, which showed the device had good visible blind performance. A small red-shift about 5 nm on the peak responsivity occurred when reverse bias increased from 5 to 15 V. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Contactless electroreflectance (CER) and photoreflectance (PR) measurements have been performed on samples with the structure of an n-doped GaAs epitaxial layer on a semi- insulating GaAs substrate. Modulated reflectance signals from the n-GaAs surface and those from the n-GaAs/SI-GaAs interface are superposed in PR spectra. For the case of CER measurement, however, Franz-Keldysh oscillations (FKOs) from the interface, which are observed in PR spectra, cannot be detected. This discrepancy is attributed to different modulation mechanisms of CER and PR. In CER experiments, the electric field modulation cannot be added to the interfacial electric field because of the effective screening by the fast response of carriers across the interface. FKOs from the interface without any perturbation by the surface signals are extracted by subtracting CER spectra from PR spectra.
Resumo:
A simple method for estimating the frequency responses of directly modulated lasers from optical spectra is presented. The frequency-modulation index and intensity-modulation index of a distributed feedback laser can be obtained through the optical spectrum analyses. The main advantage is that the measurement setup is very simple. Only a microwave source and an optical spectrum analyser are needed and there is no need to use a calibrated broadband photodetector. Experiment shows that the proposed method is as accurate as the swept frequency method using a network analyzer and is applicable to a wide range of modulation powers.
Resumo:
ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Raman spectra of diluted magnetic semiconductor GaMnAs alloy were reported. The coupled plamon-LO-phonon ( CPLP) mode has LO-like polarization properties. With increasing Mn concentration, the CPLP mode shifts to low frequency. The hole density in the alloy was determined from the ratio of the intensity of the CPLP mode to that of the unscreened LO mode in the depletion layer. The hole density increases with the increase of the Mn composition. The Raman spectra of GaMnAs alloy were measured at different temperature. It is confirmed that the hole density in the alloy increases with the increase of the temperature.
Resumo:
Naphthalocyanine-sensitized multi-walled carbon nanotube (NaPc-MWNT) composites have been synthesized through the pi-stacking between naphthalocyanine (NaPc) and carbon nanotubes. The resultant nanocomposites were characterized with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and by UV - vis absorption and photocurrent spectra. The long-range ordering was observed in the NaPc - MWNT composites by using a TEM. The enhancement in the absorption intensity and the broadening of the absorption wavelength observed in the composite films, which were due to the attachment of NaPc on the MWNT surface, is discussed based on the measured UV - vis absorption spectra. Furthermore, the photoconductivity of the poly( 3-hexylthiophene)(PAT6) - NaPc - MWNT composite film was found to increase remarkably in the visible region and broaden towards the red regions. These new phenomena were ascribed to the larger donor/acceptor (D/A) interface and the formation of a biconsecutive D/A network structure, as discussed in consideration of the photoinduced charge transfer between PAT6 and NaPc - MWNT.