938 resultados para Single-molecule detection (SMD)
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This payer presents a concrete theoretical treatment which can be used for transforming the laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule, The molecular population and alignment are described by molecular state multipoles. The results are presented in a general excitation-detection geometry and then specialized in some special geometries. The problem how to extract the initial molecular state multipoles from the rotationally resolved LIF intensity is discussed in detail. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
General expressions used for transforming raw laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule are derived by employing the density matrix approach. The molecular population and alignment are described by molecular state multipoles. The results are presented for a general excitation-detection geometry and then applied to some special geometries. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population and 14 alignment multipoles. How to extract all initial state multipoles from the rotationally unresolved emission LIF intensity is discussed in detail.
Resumo:
General expressions used for extracting the orientation and alignment parameters of a symmetric top molecule from laser-induced fluorescence (LIF) intensity are derived by employing the density matrix approach. The molecular orientation and alignment are described by molecular state multipoles. Excitation and detection are circularly and linearly polarized lights, respectively. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population, ten orientation and fourteen alignment multipoles. The problem of how to extract the initial molecular state multipoles from the resolved LIF intensity is discussed.
Resumo:
Expressions used for extracting the population and alignment parameters of a symmetric top molecule from (n + 1) laser-induced fluorescence (LIF) are derived by employing the tensor density matrix method. The molecular population and alignment are described by molecular state multipoles. The LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors, and the excitation-detection geometrical factors. The problem of how to extract the initial molecular state multipoles from (2 + 1) LIF, as an example, is discussed in detail. (C) 2000 American Institute of Physics. [S0021-9606(00)30744-9].
Resumo:
A combined detection system of simultaneous contactless conductometric and fluorescent detection for capillary electrophoresis (CE) has been designed and evaluated. The two processes share a common detection cell. A blue light-emitting diode (LED) was used as the excitation source and an optical fiber was used to collect the emitting fluorescence for fluorescent detection (FD). Inorganic ions, fluorescein isothiocyanate (FITC)-labeled amino acids and small molecule peptides were separated and detected by the combined detector, and the detection limits (LODs) of sub-μ M level were achieved.
Resumo:
BackgroundMechanical ventilation is important in caring for patients with critical illness. Clinical complications, increased mortality, and high costs of health care are associated with prolonged ventilatory support or premature discontinuation of mechanical ventilation. Weaning refers to the process of gradually or abruptly withdrawing mechanical ventilation. the weaning process begins after partial or complete resolution of the underlying pathophysiology precipitating respiratory failure and ends with weaning success (successful extubation in intubated patients or permanent withdrawal of ventilatory support in tracheostomized patients).ObjectivesTo evaluate the effectiveness and safety of two strategies, a T-tube and pressure support ventilation, for weaning adult patients with respiratory failure that required invasive mechanical ventilation for at least 24 hours, measuring weaning success and other clinically important outcomes.Search methodsWe searched the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 6); MEDLINE (via PubMed) (1966 to June 2012); EMBASE (January 1980 to June 2012); LILACS (1986 to June 2012); CINAHL (1982 to June 2012); SciELO (from 1997 to August 2012); thesis repository of CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) (http://capesdw.capes.gov.br/capesdw/) (August 2012); and Current Controlled Trials (August 2012).We reran the search in December 2013. We will deal with any studies of interest when we update the review.Selection criteriaWe included randomized controlled trials (RCTs) that compared a T-tube with pressure support (PS) for the conduct of spontaneous breathing trials and as methods of gradual weaning of adult patients with respiratory failure of various aetiologies who received invasive mechanical ventilation for at least 24 hours.Data collection and analysisTwo authors extracted data and assessed the methodological quality of the included studies. Meta-analyses using the random-effects model were conducted for nine outcomes. Relative risk (RR) and mean difference (MD) or standardized mean difference (SMD) were used to estimate the treatment effect, with 95% confidence intervals (CI).Main resultsWe included nine RCTs with 1208 patients; 622 patients were randomized to a PS spontaneous breathing trial (SBT) and 586 to a T-tube SBT. the studies were classified into three categories of weaning: simple, difficult, and prolonged. Four studies placed patients in two categories of weaning. Pressure support ventilation (PSV) and a T-tube were used directly as SBTs in four studies (844 patients, 69.9% of the sample). in 186 patients (15.4%) both interventions were used along with gradual weaning from mechanical ventilation; the PS was gradually decreased, twice a day, until it was minimal and periods with a T-tube were gradually increased to two and eight hours for patients with difficult and prolonged weaning. in two studies (14.7% of patients) the PS was lowered to 2 to 4 cm H2O and 3 to 5 cm H2O based on ventilatory parameters until the minimal PS levels were reached. PS was then compared to the trial with the T-tube (TT).We identified 33 different reported outcomes in the included studies; we took 14 of them into consideration and performed meta-analyses on nine. With regard to the sequence of allocation generation, allocation concealment, selective reporting and attrition bias, no study presented a high risk of bias. We found no clear evidence of a difference between PS and TT for weaning success (RR 1.07, 95% CI 0.97 to 1.17, 9 studies, low quality of evidence), intensive care unit (ICU) mortality (RR 0.81, 95% CI 0.53 to 1.23, 5 studies, low quality of evidence), reintubation (RR 0.92, 95% CI 0.66 to 1.26, 7 studies, low quality evidence), ICU and long-term weaning unit (LWU) length of stay (MD -7.08 days, 95% CI -16.26 to 2.1, 2 studies, low quality of evidence) and pneumonia (RR 0.67, 95% CI 0.08 to 5.85, 2 studies, low quality of evidence). PS was significantly superior to the TT for successful SBTs (RR 1.09, 95% CI 1.02 to 1.17, 4 studies, moderate quality of evidence). Four studies reported on weaning duration, however we were unable to combined the study data because of differences in how the studies presented their data. One study was at high risk of other bias and four studies were at high risk for detection bias. Three studies reported that the weaning duration was shorter with PS, and in one study the duration was shorter in patients with a TT.Authors' conclusionsTo date, we have found evidence of generally low quality from studies comparing pressure support ventilation (PSV) and with a T-tube. the effects on weaning success, ICU mortality, reintubation, ICU and LWU length of stay, and pneumonia were imprecise. However, PSV was more effective than a T-tube for successful spontaneous breathing trials (SBTs) among patients with simple weaning. Based on the findings of single trials, three studies presented a shorter weaning duration in the group undergoing PS SBT, however a fourth study found a shorter weaning duration with a T-tube.
Resumo:
Chungui Lu, Olga A. Koroleva, John F. Farrar, Joe Gallagher, Chris J. Pollock, and A. Deri Tomos (2002). Rubisco small subunit, chlorophyll a/b-binding protein and sucrose : fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. Plant Physiology, 130 (3) pp.1335-1348 Sponsorship: BBSRC RAE2008
Resumo:
Background: HIV infection leads to a decreasing immune response, thereby facilitating the appearance of other infections, one of the most important ones being HPV. However, studies are needed for determining associations between immunodeficiency caused by HIV and/or the presence of HPV during the course of cervical lesions and their degree of malignancy. This study describes the cytological findings revealed by the Papanicolaou test, laboratory characteristics and HPV molecular profile in women with and without HIV infection. Methods: A total of 216 HIV-positive and 1,159 HIV-negative women were invited to participate in the study; PCR was used for the molecular detection of HPV in cervical samples. Statistical analysis (such as percentages, Chi-square test and Fisher's exact test when applicable) determined human papillomavirus (HPV) infection frequency (single and multiple) and the distribution of six types of high-risk-HPV in women with and without HIV infection. Likewise, a logistic regression model was run to evaluate the relationship between HIV-HPV infection and different risk factors. Results: An association was found between the frequency of HPV infection and infection involving 2 or more HPV types (also known as multiple HPV infection) in HIV-positive women (69.0% and 54.2%, respectively); such frequency was greater than that found in HIV-negative women (44.3% and 22.7%, respectively). Statistically significant differences were observed between both groups (p = 0.001) regarding HPV presence (both in infection and multiple HPV infection). HPV-16 was the most prevalent type in the population being studied (p = 0.001); other viral types had variable distribution in both groups (HIV-positive and HIV-negative). HPV detection was associated with <500 cell/mm(3) CD4-count (p = 0.004) and higher HIV-viral-load (p = 0.001). HPV-DNA detection, <200 cell/mm(3) CD4-count (p = 0.001), and higher HIV-viral-load (p = 0.001) were associated with abnormal cytological findings. Conclusions: The HIV-1 positive population in this study had high multiple HPV infection prevalence. The results for this population group also suggested a greater association between HPV-DNA presence and cytological findings. HPV detection, together with low CD4 count, could represent useful tools for identifying HIV-positive women at risk of developing cervical lesions.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.
Resumo:
This thesis explores a new method to fabricate SERS detection platforms formed by large area self-assembled Au nanorod arrays. For the fabrication of these new SERS platforms a new droplet deposition method for the self-assembly of Au nanorods was developed. The method, based in the controlled evaporation of organic suspensions of Au nanorods, was used for the fabrication of horizontal and vertical arrays of Au nanorods over large areas (100μm2). The fabricated nanorods arrays showed a high degree of order measured by SEM and optical microscopy over mm2 areas, but unfortunately they detached from the support when immersed in any analyte solutions. In order to improve adhesion of arrays to the support and clean off residual organic matter, we introduced an additional stamping process. The stamping process allows the immobilization of the arrays on different flexible and rigid substrates, whose feasibility as SERS platforms were tested satisfactory with the model molecule 4ABT. Following the feasibility study, the substrates were used for the detection of the food contaminant Crystal Violet and the drug analogue Benzocaine as examples of recognition of health menaces in real field applications.
Resumo:
This thesis investigates the application of plasmonic gold nanostructures for mercury detection. Various gold and silver single nanostructures and gold nanostructure assemblies were characterised in detail by correlated single nanostructure spectroscopy and electron microscopy. Several routes for mercury detection were explored: plasmon resonance energy transfer (PRET) upon Hg2+ binding to immobilised gold nanoparticle-organic ligand hybrid structures and amalgamation of single immobilised gold nanorods upon chemical and upon electrochemical reduction of Hg2+ ions. The amalgamation approach showed large potential with extraordinary shifts of the nanorods’ scattering spectra upon exposure to reduced mercury; a result of compositional and morphological change induced in the nanorod by amalgamation with mercury. A shift of 5 nm could be recorded for a concentration as low 10 nM Hg2+. Through detailed time-dependent experiments insights into the amalgamation mechanism were gained and a model comprising 5 steps was developed. Finally, spectroelectrochemistry proved to be an excellent way to study in real time in-situ the amalgamation of mercury with gold nanorods paving the way for future work in this field.
Resumo:
PURPOSE: Mammography is known to be one of the most difficult radiographic exams to interpret. Mammography has important limitations, including the superposition of normal tissue that can obscure a mass, chance alignment of normal tissue to mimic a true lesion and the inability to derive volumetric information. It has been shown that stereomammography can overcome these deficiencies by showing that layers of normal tissue lay at different depths. If standard stereomammography (i.e., a single stereoscopic pair consisting of two projection images) can significantly improve lesion detection, how will multiview stereoscopy (MVS), where many projection images are used, compare to mammography? The aim of this study was to assess the relative performance of MVS compared to mammography for breast mass detection. METHODS: The MVS image sets consisted of the 25 raw projection images acquired over an arc of approximately 45 degrees using a Siemens prototype breast tomosynthesis system. The mammograms were acquired using a commercial Siemens FFDM system. The raw data were taken from both of these systems for 27 cases and realistic simulated mass lesions were added to duplicates of the 27 images at the same local contrast. The images with lesions (27 mammography and 27 MVS) and the images without lesions (27 mammography and 27 MVS) were then postprocessed to provide comparable and representative image appearance across the two modalities. All 108 image sets were shown to five full-time breast imaging radiologists in random order on a state-of-the-art stereoscopic display. The observers were asked to give a confidence rating for each image (0 for lesion definitely not present, 100 for lesion definitely present). The ratings were then compiled and processed using ROC and variance analysis. RESULTS: The mean AUC for the five observers was 0.614 +/- 0.055 for mammography and 0.778 +/- 0.052 for multiview stereoscopy. The difference of 0.164 +/- 0.065 was statistically significant with a p-value of 0.0148. CONCLUSIONS: The differences in the AUCs and the p-value suggest that multiview stereoscopy has a statistically significant advantage over mammography in the detection of simulated breast masses. This highlights the dominance of anatomical noise compared to quantum noise for breast mass detection. It also shows that significant lesion detection can be achieved with MVS without any of the artifacts associated with tomosynthesis.
Resumo:
While cochlear implants (CIs) usually provide high levels of speech recognition in quiet, speech recognition in noise remains challenging. To overcome these difficulties, it is important to understand how implanted listeners separate a target signal from interferers. Stream segregation has been studied extensively in both normal and electric hearing, as a function of place of stimulation. However, the effects of pulse rate, independent of place, on the perceptual grouping of sequential sounds in electric hearing have not yet been investigated. A rhythm detection task was used to measure stream segregation. The results of this study suggest that while CI listeners can segregate streams based on differences in pulse rate alone, the amount of stream segregation observed decreases as the base pulse rate increases. Further investigation of the perceptual dimensions encoded by the pulse rate and the effect of sequential presentation of different stimulation rates on perception could be beneficial for the future development of speech processing strategies for CIs.