913 resultados para Quasars, Absorption Lines
Resumo:
Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this work we studied the properties of absorption and emission line shape of layer-by-layer (LBL) poly(p-phenylene vinylene) (PPV) on indium-tin oxide (ITO) electrode. To minimize the PPV thermal conversion effects during the polymer processing, we used a less aggressive leaving group in the precursor polymer; minimizing electrode degradation. LBL ITO/PPV films showed the same absorption and emission line shape compared with LBL PPV films deposited on non-metallic substrates (glass). With this analysis we indirectly observe the decrease in the ITO degradation. Atomic force microscopy (AFM) technique was used to analyze quantitatively the microscopic morphology of the film surface. Results indicated that the substrate topology is not affected, to a large extent, by the use of dodecylbenzensulfonate (DBS) ion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.
Resumo:
Bendadaite, ideally Fe(2+)Fe(2)(3+)(AsO(4))(2)(OH)(2 center dot).4H(2)O, is a new member of the arthurite group It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada. central Portugal (type locality) Co-type locality is the granite pegmatite of La via do Almerindo (Almerindo mine), Linopolis, Divmo das Laranjeiras county, Minas Gerais, Brazil Further localities are the Vein Negra mine, Copiapo province, Chile, mid-East, Bou Azzer district, Morocco, and Para Inferida yard, Fenugu Sibirt mine, Gonnosfanadiga, Medio Campidano Province, Sardinia. Italy Type bendadaite occurs as blackish green to dark brownish tufts (<0 1 mm long) and flattened radiating aggregates. in intimate association with an intermediate member of the scorodite-mansfieldite series It is monoclinic. space group P2(l/c). with a = 10 239(3) angstrom. b = 9 713(2) angstrom, c = 5 552(2) angstrom. beta = 94 11(2)degrees. = 550 7(2) angstrom(3). Z = 2 Electron-microprobe analysis yielded (wt %). CaO 0 04, MnO 0 03. CuO 006, ZnO 004. Fe(2)O(3) (total) 43 92, Al(2)O(3) 115. SnO(2) 0 10, As(2)O(5) 43 27. P(2)O(5) 1 86, SO(3) 0.03 The empirical formula is (Fe(0 52)(2+)Fe(0 32)(3+)rectangle(0 16))(Sigma 1 00)(Fe(1 89)(3+)Al(0 11))(Sigma 2 00)(As(1 87)P(0 13))(Sigma 2 00)O(8)(OH)(2 00) 4H(2)O based. CM 2(As,P) and assuming ideal 80, 2(OH), 4H2O and complete occupancy of the ferric on site by Fe(3+) and Al Optically, bendadaite is biaxial, positive, 2V(est) = 85+/-4 degrees, 2V(eale) = 88 degrees, with alpha 1 734(3). 13 1 759(3), 7 1 787(4) Pleochrosim is medium strong X pale reddish brown. Y yellowish brown, Z dark yellowish brown. absorption Z > V > X, optical dispersion weak, r > v. Optical axis plane Is parallel to (010), with X approximately parallel to a and Z nearly parallel to c Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent It is brittle, shows irregular fracture and a good cleavage parallel to 1010} 3 15 0 10 g/cm(3), 3 193 g/cm3 (for the empirical formula) The five strongest powder diffraction lines [d in angstrom (I)(hkl] are 10 22 (10)(100), 7 036 (8)(110), 4 250 (5)(11 I), 2 865 (4)(311), 4 833 (3)(020,011) The d spacings are very similar to those of its Zn analogue, ojelaite The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe(0 95)(2+)rectangle(0 05))(Sigma 1 00)(Fe(1 80)(3+)Al(0 20))Sigma(2 00)(As(1 48)P(0 52))(Sigma 2 00)O(8)) (OH)(2) 4H(2)O (R = 16%) and confirms an arthurite-type atomic arrangement
Resumo:
In this paper are given examples of tori T(2) embedded in R(3) with all their principal lines dense. These examples are obtained by stereographic projection of deformations of the Clifford torus in S(3). (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.
Resumo:
In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 mu g of sample. The in situ fusion was accomplished using 10 mu L of a flux mixture 4.0% m/v Na(2)CO(3) + 4.0% m/v ZnO + 0.1% m/v Triton (R) X-100 added over the cement sample and heated at 800 degrees C for 20 s. The resulting mould was completely dissolved with 10 mu L of 0.1% m/v HNO(3). Limits of detection were 0.11 mu g g(-1) for Co, 1.1 mu g g(-1) for Cr and 1.9 mu g g(-1) for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student`s t-test, p<0.05). In general, the relative standard deviation was lower than 12% (n = 5). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L(-1) HNO(3). The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 mu g L(-1), with a detection limit estimated as 3 mu g L(-1) at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111 % range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A fast and reliable method for the direct determination of iron in sand by solid sampling graphite furnace atomic absorption spectrometry was developed. A Zeeman-effect 3-field background corrector was used to decrease the sensitivity of spectrometer measurements. This strategy allowed working with up to 200 mu g of samples, thus improving the representativity. Using samples with small particle sizes (1-50 mu m) and adding 5 mu g Pd as chemical modifier, it was possible to obtain suitable calibration curves with aqueous reference solutions. The pyrolysis and atomization temperatures for the optimized heating program were 1400 and 2500 degrees C, respectively. The characteristic mass, based on integrated absorbance, was 56 pg, and the detection limits, calculated considering the variability of 20 consecutive measurements of platform inserted without sample was 32 pg. The accuracy of the procedure was checked with the analysis of two reference materials (IPT 62 and 63). The determined concentrations were in agreement with the recommended values (95% confidence level). Five sand samples were analyzed, and a good agreement (95% confidence level) was observed using the proposed method and conventional flame atomic absorption spectrometry. The relative standard deviations were lower than 25% (n = 5). The tube and boat platform lifetimes were around 1000 and 250 heating cycles, respectively.
Resumo:
One method using a solid sampling device for the direct determination of Cr and Ni in fresh and used lubricating oils by graphite furnace atomic absorption spectrometry are proposed. The high organic content in the samples was minimized using a digestion step at 400 degrees C in combination with an oxidant mixture 1.0% (v v(-1)) HNO3+15% (v v(-1)) H2O2+0.1% (m v(-1)) Triton X-100 for the in situ digestion. The 3-field mode Zeeman-effect allowed the spectrometer calibration up to 5 ng of Cr and Ni. The quantification limits were 0.86 mu g g(-1) for Cr and 0.82 mg g(-1) for Ni, respectively. The analysis of reference materials showed no statistically significant difference between the recommended values and those obtained by the proposed methods.
Resumo:
The aim of the present work was to investigate the toughening of phenolic thermoset and its composites reinforced with sisal fibers, using hydroxyl-terminated polybutadiene rubber (HTPB) as both impact modifier and coupling agent. Substantial increase in the impact strength of the thermoset was achieved by the addition 10% of HTPB. Scanning electron microscopy (SEM) images of the material with 15% HTPB content revealed the formation of some rubber aggregates that reduced the efficiency of the toughening mechanism. In composites, the toughening effect was observed only when 2.5% of HTPB was added. The rubber aggregates were found located mainly at the matrix-fiber interface suggesting that HTPB could be used as coupling agent between the sisal fibers and the phenolic matrix. A composite reinforced with sisal fibers pre-impregnated with HTPB was then prepared; its SEM images showed the formation of a thin coating of HTPB on the surface of the fibers. The ability of HTBP as coupling agent between sisal fibers and phenolic matrix was then investigated by preparing a composite reinforced with sisal fibers pre-treated with HTPB. As revealed by its SEM images, the HTPB pre-treatment of the fibers resulted on the formation of a thin coating of HTPB on the surface of the fibers, which provided better compatibility between the fibers and the matrix at their interface, resulting in a material with low water absorption capacity and no loss of impact strength. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The performance of modular home made capillary electrophoresis equipment with spectrophotometric detection, at a visible region by means of a miniaturized linear charge coupled device, was evaluated for the determination of four food dyes. This system presents a simple but efficient home made cell detection scheme. A computer program that converts the spectral data after each run into the electropherograms was developed to evaluate the analytical parameters. The dyes selected for analytical evaluation of the system were Brilliant Blue FCF, Fast Green FCF, Sunset Yellow FCF, and Amaranth. Separation was carried out in a 29cm length and 75 mu m I.D fused silica capillary, using 10mmolL-1 borate buffer at pH 9, with separation voltage of 7.5kV. The detection limits for the dyes were between 0.3 and 1.5mgL-1 and the method presented adequate linearity over the ranges studied, with correlation coefficients greater than 0.99. The method was applied for determination and quantification of these dyes in fruit juices and candies.
Resumo:
The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.