753 resultados para Perturbation (Mathematics)
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Resumo:
By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.
Resumo:
We evaluate the one-loop fermion self-energy for the gauged Thirring model in (2+1) dimensions. with one massive fermion flavor. We do this in the framework of the causal perturbation theory. In contrast to QED3, the corresponding two-point function turns out to be infrared finite on the mass shell. Then, by means of a Ward identity, we derive the on-shell vertex correction and discuss the role played by causality for non-renormalizable theories.
Resumo:
In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
Resumo:
In the present work it is presented a semi-analytical and a numerical study of the perturbation caused in a spacecraft by a third body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second-order. The important reason for this procedure is to eliminate the terms due to the short time periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. It is presented an analysis of the stability of a near-circular orbit and a study to know under which conditions this orbit remains near-circular. A study of the equatorial orbits is also performed.
Resumo:
Research on the influence of multiple representations in mathematics education gained new momentum when personal computers and software started to become available in the mid-1980s. It became much easier for students who were not fond of algebraic representations to work with concepts such as function using graphs or tables. Research on how students use such software showed that they shaped the tools to their own needs, resulting in an intershaping relationship in which tools shape the way students know at the same time the students shape the tools and influence the design of the next generation of tools. This kind of research led to the theoretical perspective presented in this paper: knowledge is constructed by collectives of humans-with-media. In this paper, I will discuss how media have shaped the notions of problem and knowledge, and a parallel will be developed between the way that software has brought new possibilities to mathematics education and the changes that the Internet may bring to mathematics education. This paper is, therefore, a discussion about the future of mathematics education. Potential scenarios for the future of mathematics education, if the Internet becomes accepted in the classroom, will be discussed. © FIZ Karlsruhe 2009.
Resumo:
The main aim of this study was to present evidence of the ways in which different media have conditioned and dramatically reorganized education, in general, and mathematics education, in particular. After an introduction of the theme, we discuss the epistemological perspective that provides the foundation for our analysis: the notion of humans-with-media. Then, we briefly illustrate how the medium is related to the scientific production of mathematical knowledge. We take a detour into the world of art to examine how devices and instruments have historically been associated with the production of mathematical knowledge. Then, we review studies on the history of education to show how traditional media were introduced into schools and have influenced education. In particular, we examine how devices such as blackboards and notebooks, which were novelties a 100 years ago, came to be accepted in schools and the mathematical activities that were promoted with their use. Finally, we discuss how information technology has changed education and how the Internet may have an impact on mathematics education comparable to that of the notebook over a century ago. © FIZ Karlsruhe 2009.
Resumo:
In this paper, we investigate the relationship between mathematics education and the notions of education for all/democracy. In order to proceed with our analysis, we present Marx's concept of commodity and Jean Baudrillard's concept of sign value as a theoretical reference in the discussion of how knowledge has become a universal need in today's society and ideology. After, we engage in showing mathematics education's historical and epistemological grip to this ideology. We claim that mathematics education appears in the time period that English becomes an international language and the notion of international seems to be a key constructor in the constitution of that ideology. Here, we draw from Derrida's famous saying that there is nothing beyond the text. We conclude that a critique to modern society and education has been developed from an idealistic concept of democracy. © FIZ Karlsruhe 2009.
Resumo:
Mathematics education in Brazil, if we consider what one may call the scientific phase, is about 30 years old. The papers for this special issue focus mainly on this period. During these years, many trends have emerged in mathematics education to address the complex problems facing Brazilian society. However, most Brazilian mathematics educators feel that the separation of research into trends is a theoretical idealization that does not respond to the dynamics of the problems we face. We raise the conjecture that the complexity of Brazilian society, where pockets of wealth coexist with the most shocking poverty, has contributed to the adoption and generation of different strands in mathematics education, crossing the boundaries between trends. At a more micro level, we also raise the conjecture that Brazilian trends in research are interwoven because of the way that Brazilian mathematics educators have experienced the process of globalization over these 30 years. This tapestry of trends is a predominant characteristic of mathematics education in Brazil. © FIZ Karlsruhe 2009.
Resumo:
Some orbital characteristics of lunar artificial satellites is presented taking into account the perturbation of the third-body in elliptical orbit and the non-uniform distribution of mass of the Moon. We consider the development of the non-sphericity of the Moon in zonal spherical harmonics up to the ninth order and sectorial harmonic C 22 due to the lunar equatorial ellipticity. The motion of the artificial satellite is studied under the single-averaged analytical model. The average is applied to the mean anomaly of the satellite to analyze low-altitude orbits which are of highest importance for future lunar missions. We found families of frozen orbits with long lifetimes for the problem of an orbiter travelling around the Moon.