944 resultados para Peptides gastro-intestinaux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Oesophageal adenocarcinoma has increased dramatically in incidence over the past three decades with a particularly high burden of disease at the gastro-oesophageal junction. Many cases occur in individuals without known gastro-oesophageal reflux disease and in the absence of Barrett’s oesophagus suggesting that mechanisms other than traditional reflux may be important. Distal squamous mucosa may be prone to acid damage even in the absence of traditional reflux by the mechanism of distal opening of the lower oesophageal sphincter. This is splaying of the distal segment of lower oesophageal sphincter allowing acid ingress without traditional reflux. It has been suggested that the cardiac mucosa at the gastro-oesophageal junction, separating oesophageal squamous mucosa and acid secreting columnar mucosa of the stomach may be an abnormal mucosa arising as a consequence of acid damage. By this theory the cardiac mucosa is metaplastic and akin to ultra-short Barrett’s oesophagus. Obesity is a known risk factor for adenocarcinoma at the gastro-oesophageal junction and its rise has paralleled that of oesophageal cancer. Some of this excess risk undoubtedly operates through stress on the gastro-oesophageal junction and a predisposition to reflux. However we sought to explore the impact of obesity on the gastro-oesophageal junction in healthy volunteers without reflux and in particular to determine the characteristics of the cardiac mucosa and mechanisms of reflux in this group. Methods: 61 healthy volunteers with normal and increased waist circumference were recruited. 15 were found to have a hiatus hernia during the study protocol and were analysed separately. Volunteers had comprehensive pathological, physiological and anatomical assessments of the gastro-oesophageal junction including endoscopy with biopsies, MRI scanning before and after a standardised meal, prolonged recording of pH and manometry before and after a meal and screening by fluoroscopy to identify the squamo-columnar junction. In the course of the early manometric assessments a potential error associated with the manometry system recordings was identified. We therefore also sought to document and address this on the benchtop and in vivo. Key Findings: 1. In documenting the behaviour of the manoscan we described an immediate effect of temperature change on the pressure recorded by the sensors; ‘thermal effect’ and an ongoing drift of the recorded pressure with time; ‘baseline drift’. Thermal effect was well compensated within the standard operation of the system but baseline drift not addressed. Applying a linear correction to recorded data substantially reduced the error associated with baseline drift. 2. In asymptomatic healthy volunteers there was lengthening of the cardiac mucosa in association with central obesity and age. Furthermore, the cardiac mucosa in healthy volunteers demonstrated an almost identical immunophenotype to non-IM Barrett’s mucosa, which is considered to arise by metaplasia of oesophageal squamous mucosa. These findings support the hypothesis that the cardia is metaplastic in origin. 3. We have demonstrated a plausible mechanism of damage to distal squamous mucosa in association with obesity. In those with a large waist circumference we observed increased ingress of acid within but not across the lower oesophageal sphincter; ‘intrasphincteric reflux’ 4. The 15 healthy volunteers with a hiatus hernia were compared to 15 controls matched for age, gender and waist circumference. Those with a hiatus hernia had a longer cardiac mucosa and although they did not have excess traditional reflux they had excess distal acid exposure by short segment acid reflux and intrasphincteric acid reflux. Conclusions: These findings are likely to be relevant to adenocarcinoma of the gastro-oesophageal junction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the greatest sources of biologically active compounds is natural products. Often these compounds serve as platforms for the design and development of novel drugs and therapeutics. The overwhelming amount of genomic information acquired in recent years has revealed that ribosomally synthesized and post-translationally modified natural products are much more widespread than originally anticipated. Identified in nearly all forms of life, these natural products display incredible structural diversity and possess a wide range of biological functions that include antimicrobial, antiviral, anti-inflammatory, antitumor, and antiallodynic activities. The unique pathways taken to biosynthesize these compounds offer exciting opportunities for the bioengineering of these complex molecules. The studies described herein focus on both the mode of action and biosynthesis of antimicrobial peptides. In Chapter 2, it is demonstrated that haloduracin, a recently discovered two-peptide lantibiotic, possesses nanomolar antimicrobial activity against a panel of bacteria strains. The potency of haloduracin rivals that of nisin, an economically and therapeutically relevant lantibiotic, which can be attributed to a similar dual mode of action. Moreover, it was demonstrated that this lantibiotic of alkaliphile origin has better stability at physiological pH than nisin. The molecular target of haloduracin was identified as the cell wall peptidoglycan precursor lipid II. Through the in vitro biosynthesis of haloduracin, several analogues of Halα were prepared and evaluated for their ability to inhibit peptidoglycan biosynthesis as well as bacterial cell growth. In an effort to overcome the limitations of in vitro biosynthesis strategies, a novel strategy was developed resulting in a constitutively active lantibiotic synthetase enzyme. This methodology, described in Chapter 3, enabled the production of fully-modified lacticin 481 products with proteinogenic and non-proteinogenic amino acid substitutions. A number of lacticin 481 analogues were prepared and their antimicrobial activity and ability to bind lipid II was assessed. Moreover, site-directed mutagenesis of the constitutively active synthetase resulted in a kinase-like enzyme with the ability to phosphorylate a number of peptide substrates. The hunt for a lantibiotic synthetase enzyme responsible for installing the presumed dehydro amino acids and a thioether ring in the natural product sublancin, led to the identification and characterization of a unique post-translational modification. The studies described in Chapter 4, demonstrate that sublancin is not a lantibiotic, but rather an unusual S-linked glycopeptide. Its structure was revised based on extensive chemical, biochemical, and spectroscopic characterization. In addition to structural investigation, bioinformatic analysis of the sublancin gene cluster led to the identification of an S-glycosyltransferase predicted to be responsible for the post-translational modification of the sublancin precursor peptide. The unprecedented glycosyltransferase was reconstituted in vitro and demonstrated remarkable substrate promiscuity for both the NDP-sugar co-substrate as well as the precursor peptide itself. An in vitro method was developed for the production of sublancin and analogues which were subsequently evaluated in bioactivity assays. Finally, a number of putative biosynthetic gene clusters were identified that appear to harbor the necessary genes for production of an S-glycopeptide. An additional S-glycosyltransferase with more favorable intrinsic properties including better expression, stability, and solubility was reconstituted in vitro and demonstrated robust catalytic abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is a high prevalence of gastro-duodenal disease in sub-Saharan Africa. Peptic ulcer disease in dyspeptic patients, 24.5%, was comparable to prevalence of gastro-duodenal disease among symptomatic individuals in developed countries (12 – 25%). Limited data exists regarding its associated risk factors despite accumulating evidence indicating that gastroduodenal disease is common in Ghana. Objectives: This study investigates risk factors associated with gastro-duodenal disease at the Korle-Bu Teaching Hospital, Accra, Ghana. Methods: This study utilized a cross-sectional design to consecutively recruit patients referred with upper gastro-intestinal symptoms for endoscopy. The study questionnaire was administered to study participants. Helicobacter pylori infection was confirmed by rapid-urease examination at endoscopy. Results: Of 242 patients sampled; 64 had duodenal ulcer, 66 gastric ulcer, 27gastric cancer and 64 non-ulcer dyspepsia. Nineteen (19) had duodenal and gastric ulcer while 2 had gastric ulcer and cancer. A third (32.6%) of patients had history of NSAIDuse. H. pylori was associated with gastric ulcer (p=0.033) and duodenal ulcer (p=0.001). There was an increased prevalence of duodenal ulcer in H. pylori-infected patients taking NSAIDs, P=0.003. Conclusion: H. pylori was a major risk factor for peptic ulcer disease. However, NSAID-related gastro-duodenal injury has been shown to be common in H. pylori infected patients. It highlights the need for awareness of the adverse gastro-intestinal effects in a H. pylori endemic area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese (doutorado)–Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a study of various methods to produce bioactive peptides. Initially, the generation of anti-Cronobacter spp. peptides by fermentation of milk protein is described. Lactobacillus johnsonii DPC6026 was used to generate two previously described antimicrobial peptides. Phenotypic analysis indicated unsatisfactory casein hydrolysis. The genome of the strain was sequenced and annotated. Results showed a number of unique features present, most notably a large symmetrical inversion of approximately 750kb in comparison with the human isolate L. johnsonii NCC 533. The data suggest significant genetic diversity and intra-species genomic rearrangements within the L. johnsonii spp.. Cronobacter spp. have emerged as pathogens of concern to the powdered infant formula industry. Chapters 3 and 4 of this thesis describe novel methods to generate two antimicrobial peptides, Caseicin A and B. In Chapter 3 a bank of Bacillus strains was generated and investigated for caseicin production. Following casein hydrolysis by specific B. cereus and B. thuringiensis strains the peptides of interest were generated. Chapter 4 describes a sterile enzymatic method to generate peptides from casein. Bioinformatic tools were used to predict enzymes capable of liberating caseicin peptides from casein. Hydrolysates were generated using suitable enzymes, examined and some were found to produce peptides with activity against Cronobacter spp.. This study establishes a potential industrial-grade method to generate antimicrobial peptides. Administration of GLP-1 leads to improved glycaemic control in diabetes patients. Generation of a recombinant lactic acid bacteria capable of producing a GLP-1 analogue is described in Chapter 5. In-vivo analysis confirmed insulinotropic activity. The results illustrate a method using bacteriocin producing cellular machinery to generate bioactive peptides. This thesis describes the generation of bioactive peptides by bacterial fermentation, tailored enzymatic hydrolysis and recombinant bacterial methods. The techniques described contribute to bioactive peptide research with regards novel methods of production and industrial scale-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term "mitokines" refers to signals derived from mitochondria that have an impact on other cells or tissues (Durieux et al., 2011). Rather than being simply a set of DNA composed by 37 genes, the mitochondrial DNA (mtDNA) is quite complex and includes small RNAs (Mercer et al., 2011). Mitochondrial-derived peptides (MDPs) are encoded by functional short open reading frames (sORFs) in the mtDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My PhD research focused on the development of environmentally sustainable methods for peptide synthesis. The traditional and toxic solvents and bases used in solid-phase peptide synthesis (SPPS) were replaced with eco-friendly alternatives to reduce the environmental impact. In particular, N-octylpyrrolidone was found to be an effective green solvent in combination with dimethyl carbonate, resulting in a 63-66% reduction in process mass intensity (PMI). In addition, a green base, DEAPA, was identified for Fmoc removal, which showed comparable results to piperidine, while being less regulated and toxic, and able to better control aspartimide-related side reactions. The study extended beyond SPPS to explore liquid-phase peptide synthesis (LPPS) and solution-phase peptide synthesis (SolPPS) using propylphosphonic anhydride (T3P®) as a coupling reagent. The developed green SolPPS using Cbz amino acids achieved exceptional efficiency, minimal racemisation and a PMI of 30 to introduce a single amino acid in the iterative process. This PMI value is the lowest ever reported for an oligopeptide synthesis protocol. This technique was extended to N-Boc amino acids in DCM, requiring aqueous workups and achieving 95% purity of Leu-Enkephalin. Finally, T3P® was found to be suitable for LPPS. An anchor, mimicking a resin, was used to allow precipitation or solubilisation of the growing anchored-peptide, depending on the polarity of the solvent used. Anisole and DCM resulted in a pentapeptide purity of over 95%. While at Oxford University, I synthesized a cleavable fragment that is sensitive to cathepsin B (CatB) and incorporated it into a cyclic antisense oligonucleotide (ASO) targeting the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). ASO demonstrated good stability in a simulated in vivo environment using human serum and high affinity with complementary RNA. The Cyclic-ASO was opened by CatB in optimal conditions. Experiments highlight therapeutic potential and a novel method for controlling cyclic oligonucleotide activity, potentially enhancing cellular uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Islet neogenesis-associated protein (INGAP) is a peptide found in pancreatic exocrine-, duct- and islet- non-β-cells from normal hamsters. Its increase induced by either its exogenous administration or by the overexpression of its gene enhances β-cell secretory function and increases β-cell mass by a combination of stimulation of cell replication and islet neogenesis and reduction of β-cell apoptosis. We studied the potential modulatory role of endogenous INGAP in insulin secretion using two different experimental approaches. Hamster islets transfected with INGAP-small interfering RNA (INGAP-siRNA) were used to study glucose-stimulated insulin secretion (GSIS). In parallel, freshly isolated islets were incubated with high glucose and the same concentration of either a specific anti-INGAP rabbit serum or normal rabbit serum. INGAP-siRNA transfected islets reduced their INGAP mRNA and protein content by 35.1% and 47.2%, respectively whereas GSIS decreased by 25.8%. GSIS by transfected islets attained levels comparable to those recorded in control islets when INGAP pentadecapeptide (INGAP-PP) was added to the culture medium. INGAP antibody in the medium decreased significantly GSIS in a dose-dependent manner. These results indicate that endogenous INGAP plays a physiological positive modulatory role in insulin secretion, supporting its possible use in the treatment of prediabetes and Type 2 diabetes.