933 resultados para Merits and Defects of Technology
Resumo:
The RAP-A Indigenous supplement has been designed to provide guidelines for the Adaptation and implementation of the RAP Program for indigenous adolescents. It describes a variety of adaptations that have been made to RAP-A to make it more suitable for indigenous teenagers.
Resumo:
Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.
Resumo:
Cold-formed steel members are extensively used in the building construction industry, especially in residential, commercial and industrial buildings. In recent times, fire safety has become important in structural design due to increased fire damage to properties and loss of lives. However, past research into the fire performance of cold-formed steel members has been limited, and was confined to compression members. Therefore a research project was undertaken to investigate the structural behaviour of compact cold-formed steel lipped channel beams subject to inelastic local buckling and yielding, and lateral-torsional buckling effects under simulated fire conditions and associated section and member moment capacities. In the first phase of this research, an experimental study based on tensile coupon tests was undertaken to obtain the mechanical properties of elastic modulus and yield strength and the stress-strain relationship of cold-formed steels at uniform ambient and elevated temperatures up to 700oC. The mechanical properties deteriorated with increasing temperature and are likely to reduce the strength of cold-formed beams under fire conditions. Predictive equations were developed for yield strength and elastic modulus reduction factors while a modification was proposed for the stressstrain model at elevated temperatures. These results were used in the numerical modelling phases investigating the section and member moment capacities. The second phase of this research involved the development and validation of two finite element models to simulate the behaviour of compact cold-formed steel lipped channel beams subject to local buckling and yielding, and lateral-torsional buckling effects. Both models were first validated for elastic buckling. Lateral-torsional buckling tests of compact lipped channel beams were conducted at ambient temperature in order to validate the finite element model in predicting the non-linear ultimate strength behaviour. The results from this experimental study did not agree well with those from the developed experimental finite element model due to some unavoidable problems with testing. However, it highlighted the importance of magnitude and direction of initial geometric imperfection as well as the failure direction, and thus led to further enhancement of the finite element model. The finite element model for lateral-torsional buckling was then validated using the available experimental and numerical ultimate moment capacity results from past research. The third phase based on the validated finite element models included detailed parametric studies of section and member moment capacities of compact lipped channel beams at ambient temperature, and provided the basis for similar studies at elevated temperatures. The results showed the existence of inelastic reserve capacity for compact cold-formed steel beams at ambient temperature. However, full plastic capacity was not achieved by the mono-symmetric cold-formed steel beams. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity. Comparison of member capacity results from finite element analyses with current design rules showed that they do not give accurate predictions of lateral-torsional buckling capacities at ambient temperature and hence new design rules were developed. The fourth phase of this research investigated the section and member moment capacities of compact lipped channel beams at uniform elevated temperatures based on detailed parametric studies using the validated finite element models. The results showed the existence of inelastic reserve capacity at elevated temperatures. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity in fire design codes, ambient temperature design codes as well as those proposed by other researchers. The results showed that lateral-torsional buckling capacities are dependent on the ratio of yield strength and elasticity modulus reduction factors and the level of non-linearity in the stress-strain curves at elevated temperatures in addition to the temperature. Current design rules do not include the effects of non-linear stress-strain relationship and therefore their predictions were found to be inaccurate. Therefore a new design rule that uses a nonlinearity factor, which is defined as the ratio of the limit of proportionality to the yield stress at a given temperature, was developed for cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. This thesis presents the details and results of the experimental and numerical studies conducted in this research including a comparison of results with predictions using available design rules. It also presents the recommendations made regarding the accuracy of current design rules as well as the new developed design rules for coldformed steel beams both at ambient and elevated temperatures.
Resumo:
Distributed Denial of Services DDoS, attacks has become one of the biggest threats for resources over Internet. Purpose of these attacks is to make servers deny from providing services to legitimate users. These attacks are also used for occupying media bandwidth. Currently intrusion detection systems can just detect the attacks but cannot prevent / track the location of intruders. Some schemes also prevent the attacks by simply discarding attack packets, which saves victim from attack, but still network bandwidth is wasted. In our opinion, DDoS requires a distributed solution to save wastage of resources. The paper, presents a system that helps us not only in detecting such attacks but also helps in tracing and blocking (to save the bandwidth as well) the multiple intruders using Intelligent Software Agents. The system gives dynamic response and can be integrated with the existing network defense systems without disturbing existing Internet model. We have implemented an agent based networking monitoring system in this regard.
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
This report explains the objectives, datasets and evaluation criteria of both the clustering and classification tasks set in the INEX 2009 XML Mining track. The report also describes the approaches and results obtained by the different participants.
Resumo:
Habitat models are widely used in ecology, however there are relatively few studies of rare species, primarily because of a paucity of survey records and lack of robust means of assessing accuracy of modelled spatial predictions. We investigated the potential of compiled ecological data in developing habitat models for Macadamia integrifolia, a vulnerable mid-stratum tree endemic to lowland subtropical rainforests of southeast Queensland, Australia. We compared performance of two binomial models—Classification and Regression Trees (CART) and Generalised Additive Models (GAM)—with Maximum Entropy (MAXENT) models developed from (i) presence records and available absence data and (ii) developed using presence records and background data. The GAM model was the best performer across the range of evaluation measures employed, however all models were assessed as potentially useful for informing in situ conservation of M. integrifolia, A significant loss in the amount of M. integrifolia habitat has occurred (p < 0.05), with only 37% of former habitat (pre-clearing) remaining in 2003. Remnant patches are significantly smaller, have larger edge-to-area ratios and are more isolated from each other compared to pre-clearing configurations (p < 0.05). Whilst the network of suitable habitat patches is still largely intact, there are numerous smaller patches that are more isolated in the contemporary landscape compared with their connectedness before clearing. These results suggest that in situ conservation of M. integrifolia may be best achieved through a landscape approach that considers the relative contribution of small remnant habitat fragments to the species as a whole, as facilitating connectivity among the entire network of habitat patches.
Resumo:
A teaching and learning development project is currently under way at Queens-land University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.
Resumo:
Service bundling can be regarded as an option for service providers to strengthen their competitive advantages, cope with dynamic market conditions and heterogeneous consumer demand. Despite these positive effects, actual guidance for the identification of service bundles and the act of bundling itself can be regarded as a gap. Previous research has resulted in a conceptualization of a service bundling method relying on a structured service description in order to fill this gap. This method addresses the reasoning about the suitability of services to be part of a bundle based on analyzing existing relationships between services captured by a description language. This paper extends the aforementioned research by presenting an initial set of empirically derived relationships between services in existing bundles that can subsequently be utilized to identify potential new bundles. Additionally, a gap analysis points out to what extent prominent ontologies and service description languages accommodate for the identified relationships.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The patient group had a mean initial (unloaded) major Cobb angle of 43±7º, which increased to 50±9º on application of the compressive load. The 7° increase in mean Cobb angle is consistent with that reported by a previous study comparing standing versus supine posture in scoliosis patients (Torell et al, 1985. Spine 10:425-7).
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Multi-disciplinary approaches to complex problems are becoming more common – they enable criteria manifested in distinct (and potentially conflicting) domains to be jointly balanced and satisfied. In this paper we present airport terminals as a case study which requires multi-disciplinary knowledge in order to balance conflicting security, economic and passenger-driven needs and correspondingly enhance the design, management and operation of airport terminals. The need for a truly multi-disciplinary scientific approach which integrates information, process, people, technology and space domains is highlighted through a brief discussion of two challenges currently faced by airport operators. The paper outlines the approach taken by this project, detailing the aims and objectives of each of seven diverse research programs.
Resumo:
The pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for seeded cells to organize into a functioning tissue. In this report we have investigated the effects of different concentrations of silk fibroin protein on three-dimensional (3D) scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by the freeze drying technique, with the pore sizes ranging from 50 to 300 lm. The pore sizes of the scaffolds decreased as the concentration of fibroin protein increased. Human bone marrow mesenchymal stromal cells (BMSC) transfected with the BMP7 gene were cultured in these scaffolds. A cell viability colorimetric assay, alkaline phosphatase assay and reverse transcription-polymerase chain reaction were performed to analyze the effect of pore size on cell growth, the secretion of extracellular matrix (ECM) and osteogenic differentiation. Cell migration in 3D scaffolds was confirmed by confocal microscopy. Calvarial defects in SCID mice were used to determine the bone forming ability of the silk fibroin scaffolds incorporating BMSC expressing BMP7. The results showed that BMSC expressing BMP7 preferred a pore size between 100 and 300 lm in silk fibroin protein fabricated scaffolds, with better cell proliferation and ECM production. Furthermore, in vivo transplantation of the silk fibroin scaffolds combined with BMSC expressing BMP7 induced new bone formation. This study has shown that an optimized pore architecture of silk fibroin scaffolds can modulate the bioactivity of BMP7-transfected BMSC in bone formation.
Resumo:
Reputation and proof-of-work systems have been outlined as methods bot masters will soon use to defend their peer-to-peer botnets. These techniques are designed to prevent sybil attacks, such as those that led to the downfall of the Storm botnet. To evaluate the effectiveness of these techniques, a botnet that employed these techniques was simulated, and the amount of resources required to stage a successful sybil attack against it measured. While the proof-of-work system was found to increase the resources required for a successful sybil attack, the reputation system was found to lower the amount of resources required to disable the botnet.
Resumo:
Taking an 'action genre' approach (Lemke, 199**) this paper analyses representational strategies of three genres of photography: press photography, photojournalism and documentary photography. While there has been much written on editorial photography, there is no organised body of scholarship that distinguishes between these three very different modes of of editorial photography.