818 resultados para MODEL-DRIVEN DEVELOPMENT
Resumo:
Lovastatin biosynthesis depends on the relative concentrations of dissolved oxygen and the carbon and nitrogen resources. An elucidation of the underlying relationship would facilitate the derivation of a controller for the improvement of lovastatin yield in bioprocesses. To achieve this goal, batch submerged cultivation experiments of lovastatin production by Aspergillus flavipus BICC 5174, using both lactose and glucose as carbon sources, were performed in a 7 liter bioreactor and the data used to determine how the relative concentrations of lactose, glucose, glutamine and oxygen affected lovastatin yield. A model was developed based on these results and its prediction was validated using an independent set of batch data obtained from a 15-liter bioreactor using five statistical measures, including the Willmott index of agreement. A nonlinear controller was designed considering that dissolved oxygen and lactose concentrations could be measured online, and using the lactose feed rate and airflow rate as process inputs. Simulation experiments were performed to demonstrate that a practical implementation of the nonlinear controller would result in satisfactory outcomes. This is the first model that correlates lovastatin biosynthesis to carbon-nitrogen proportion and possesses a structure suitable for implementing a strategy for controlling lovastatin production.
Resumo:
Research on business model development has focused on the relationships between elements of value conceptualization and organization having a linear sequence in which business models are first designed and then implemented. Another stream of research points to business model development with these elements interacting in a cyclical manner. There is a need to improve our understanding of the connective mechanisms and dynamics involved in business model development, particularly from the challenging perspective of commercializing innovations. The aim of this paper was to explore business model development during the commercialization of innovations through a case-based qualitative study. This study found from four case studies that specific elements of business model development, representative of the conceptualization of value and organizing for value creation, integrate in a dynamic and cyclical process in the commercialization of technology innovations. The study provides empirical evidence that adds new insights to literature on sequential and more interactive processes of business model development. It also contributes to literature on business model development and particularly how it relates to the commercialization of innovations.
Resumo:
An intralaminar damage model (IDM), based on continuum damage mechanics, was developed for the simulation of composite structures subjected to damaging loads. This model can capture the complex intralaminar damage mechanisms, accounting for mode interactions, and delaminations. Its development is driven by a requirement for reliable crush simulations to design composite structures with a high specific energy absorption. This IDM was implemented as a user subroutine within the commercial finite element package, Abaqus/Explicit[1]. In this paper, the validation of the IDM is presented using two test cases. Firstly, the IDM is benchmarked against published data for a blunt notched specimen under uniaxial tensile loading, comparing the failure strength as well as showing the damage. Secondly, the crush response of a set of tulip-triggered composite cylinders was obtained experimentally. The crush loading and the associated energy of the specimen is compared with the FE model prediction. These test cases show that the developed IDM is able to capture the structural response with satisfactory accuracy
Resumo:
The increasing complexity and scale of cloud computing environments due to widespread data centre heterogeneity makes measurement-based evaluations highly difficult to achieve. Therefore the use of simulation tools to support decision making in cloud computing environments to cope with this problem is an increasing trend. However the data required in order to model cloud computing environments with an appropriate degree of accuracy is typically large, very difficult to collect without some form of automation, often not available in a suitable format and a time consuming process if done manually. In this research, an automated method for cloud computing topology definition, data collection and model creation activities is presented, within the context of a suite of tools that have been developed and integrated to support these activities.
Resumo:
Purpose: There is wide variability in how attending physician roles on teaching teams, including patient care and trainee learning, are enacted. This study sought to better understand variability by considering how different attendings configured and rationalized direct patient care, trainee oversight, and teaching activities.
Method: Constructivist grounded theory guided iterative data collection and analyses. Data were interviews with 24 attending physicians from two academic centers in Ontario, Canada, in 2012. During interviews, participants heard a hypothetical presentation and reflected on it as though it were presented to their team during a typical admission case review.
Results: Four supervisory styles were identified: direct care, empowerment, mixed practice, and minimalist. Driven by concerns for patient safety, direct care involves delegating minimal patient care responsibility to trainees. Focused on supporting trainees’ progressive independence, empowerment uses teaching and oversight strategies to ensure quality of care. In mixed practice, patient care is privileged over teaching and is adjusted on the basis of trainee competence and contextual features such as patient volume. Minimalist style involves a high degree of trust in senior residents, delegating most patient care, and teaching to them. Attendings rarely discussed their styles with the team.
Conclusions: The model adds to the literature on variability in supervisory practice, showing that the four styles reflect different ways of responding to tensions in the role and context. This model could be refined through observational research exploring the impact of context on style development and enactment. Making supervisory styles explicit could support improvement of team competence.
Resumo:
Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment
methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world
structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained
challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but
there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour.This
paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour
on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation
of these parameters with respect to scour can be examined.The key novelty of this model is that it is the first numerical model for
simulating scour that combines a realistic vehicle loadingmodel with a robust foundation soil responsemodel.This paper provides a
description of the model development and explains the mathematical theory underlying themodel. Finally a case study application
of the model using typical bridge, soil, and vehicle properties is provided.