993 resultados para Lattice-binary parameter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The input-constrained erasure channel with feedback is considered, where the binary input sequence contains no consecutive ones, i.e., it satisfies the (1, infinity)-RLL constraint. We derive the capacity for this setting, which can be expressed as C-is an element of = max(0 <= p <= 0.5) (1-is an element of) H-b (p)/1+(1-is an element of) p, where is an element of is the erasure probability and Hb(.) is the binary entropy function. Moreover, we prove that a priori knowledge of the erasure at the encoder does not increase the feedback capacity. The feedback capacity was calculated using an equivalent dynamic programming (DP) formulation with an optimal average-reward that is equal to the capacity. Furthermore, we obtained an optimal encoding procedure from the solution of the DP, leading to a capacity-achieving, zero-error coding scheme for our setting. DP is, thus, shown to be a tool not only for solving optimization problems, such as capacity calculation, but also for constructing optimal coding schemes. The derived capacity expression also serves as the only non-trivial upper bound known on the capacity of the input-constrained erasure channel without feedback, a problem that is still open.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of a molecule or group with an atom which is less electronegative than oxygen (0) and directly interacting with the surface is very relevant to development of PtM (M = 3d-transition metal) catalysts with high activity. Here, we present theoretical analysis of the adsorption of NH3 molecule (N being less electronegative than 0) on (111) surfaces of PtM (Fe, Co, Ni) alloys using the first principles density functional approach. We find that, while NH3-Pt interaction is stronger than that of NH3 with the elemental M-surfaces, it is weaker than the strength of interaction of NH3 with M-site on the surface of PtM alloy. (C) 2016 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (rho gamma L-2/mu), the Schmidt number (mu/rho D), the Ericksen number (mu(gamma)/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts mu(r), and the ratio of the system size and layer spacing (L/lambda). Here, rho and mu are the fluid density and average viscosity, (gamma) over dot is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, mu(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/lambda = 32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with ``grain boundaries,'' which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains. (c) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional (2D) surface varies with the thickness of the water layer, the 2D flow seems to be "compressible" and our compressible model is applied. Simulation solutions meet with the experimental observations qualitatively. Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmospheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex, the Gulf Stream, and the Kuroshio Current, etc,, can be expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

格子Boltzmann数值模拟方法是研究复杂的多孔介质结构特别是Klinkenberg效应的有效方法之一,对处理复杂边值问题尤其有效。用格子Boltzmann方法研究了气流穿越多孔介质问题,并将数值计算结果与实验结果进行了比较,结果表明格子Boltzmann方法是数值模拟气流穿越多孔介质问题的有效方法之一。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prepose a 5-bit lattice Boltzmann model for KdV equation. Using Chapman-Enskog expansion and multiscale technique, we obtained high order moments of equilibrium distribution function, and the 3rd dispersion coefficient and 4th order viscosity. The parameters of this scheme can be determined by analysing the energy dissipation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a lattice Boltzmann model to simulate compressible flows by introducing an attractive force. This scheme has two main advantages: one is to soften sound speed effectively, which greatly raises the Mach number (up to 5); another is its relative simple procedure. Simulations of the March cone and the comparison between theoretical expectations and simulations demonstrate that the scheme is effective in the simulation of compressible flows with high Mach numbers, which would create many new applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational efficiency of the algorithm, a properly smooth function, which is derived from the sigmoid function, is employed to update the homotopy parameter during iteration. Numerical results show the feature of global convergence and high performance of this method. In addition, even the measurement quantities are heavily contaminated by noises, and a good solution can be found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A material model, whose framework is parallel spring-bundles oriented in 3-D space, is proposed. Based on a discussion of the discrete schemes and optimum discretization of the solid angles, a 3-D network cell consisted of one-dimensional components is developed with its geometrical and physical parameters calibrated. It is proved that the 3-D network model is able to exactly simulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the previous models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A simplified model is also proposed to realize high computation accuracy within low computation cost. Examples demonstrate that the 3-D network model has particular superiority in the simulation of short-fiber reinforced composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three models, JKR (Johnson, Kendall and Roberts), DMT (Derjaguin, Muller, and Toporov) andMD (Maugis-Dugdale),are compared with the Hertz model in dealing with nano-contact problems. It has been shown that both the dimensionless load parameter, P D P=.1/4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a lattice Boltzmann model for the wave equation. Using a lattice Boltzmann equation and the Chapman-Enskog expansion, we get 1D and 2D wave equations with truncation error of order two. The numerical tests show the method can be used to simulate the wave motions.