987 resultados para Interferon-gamma -- immunology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pivotal role of spleen CD4(+) T cells in the development of both malaria pathogenesis and protective immunity makes necessary a profound comprehension of the mechanisms involved in their activation and regulation during Plasmodium infection. Herein, we examined in detail the behaviour of non-conventional and conventional splenic CD4(+) T cells during P. chabaudi malaria. We took advantage of the fact that a great proportion of CD4(+) T cells generated in CD1d(-/-) mice are I-A(b)-restricted (conventional cells), while their counterparts in I-Ab(-/-) mice are restricted by CD1d and other class IB major histocompatibility complex (MHC) molecules (non-conventional cells). We found that conventional CD4(+) T cells are the main protagonists of the immune response to infection, which develops in two consecutive phases concomitant with acute and chronic parasitaemias. The early phase of the conventional CD4(+) T cell response is intense and short lasting, rapidly providing large amounts of proinflammatory cytokines and helping follicular and marginal zone B cells to secrete polyclonal immunoglobulin. Both TNF-alpha and IFN-gamma production depend mostly on conventional CD4(+) T cells. IFN-gamma is produced simultaneously by non-conventional and conventional CD4(+) T cells. The early phase of the response finishes after a week of infection, with the elimination of a large proportion of CD4(+) T cells, which then gives opportunity to the development of acquired immunity. Unexpectedly, the major contribution of CD1d-restricted CD4(+) T cells occurs at the beginning of the second phase of the response, but not earlier, helping both IFN-gamma and parasite-specific antibody production. We concluded that conventional CD4(+) T cells have a central role from the onset of P. chabaudi malaria, acting in parallel with non-conventional CD4(+) T cells as a link between innate and acquired immunity. This study contributes to the understanding of malaria immunology and opens a perspective for future studies designed to decipher the molecular mechanisms behind immune responses to Plasmodium infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lack of a clear correlation between the levels of antibody to pertussis antigens and protection against disease lends credence to the possibility that cell-mediated immunity provides primary protection against disease. This phase I comparative trial had the aim of comparing the in vitro cellular immune response and anti-pertussis toxin (anti-PT) immunoglobulin G (IgG) titers induced by a cellular pertussis vaccine with low lipopolysaccharide (LPS) content (wP(low) vaccine) with those induced by the conventional whole-cell pertussis (wP) vaccine. A total of 234 infants were vaccinated at 2, 4, and 6 months with the conventional wP vaccine or the wP(low) vaccine. Proliferation of CD3(+) T cells was evaluated by flow cytometry after 6 days of peripheral blood mononuclear cell culture with stimulation with heat-killed Bordetella pertussis or phytohemagglutinin (PHA). CD3(+), CD4(+), CD8(+), and T-cell receptor gamma delta-positive (gamma delta(+)) cells were identified in the gate of blast lymphocytes. Gamma interferon, tumor necrosis factor alpha, interleukin-4 (IL-4), and IL-10 levels in super-natants and serum anti-PT IgG levels were determined using enzyme-linked immunosorbent assay (ELISA). The net percentage of CD3(+) blasts in cultures with B. pertussis in the group vaccinated with wP was higher than that in the group vaccinated with the wP(low) vaccine (medians of 6.2% for the wP vaccine and 3.9% for the wP(low) vaccine; P = 0.029). The frequencies of proliferating CD4(+), CD8(+), and gamma delta(+) cells, cytokine concentrations in supernatants, and the geometric mean titers of anti-PT IgG were similar for the two vaccination groups. There was a significant difference between the T-cell subpopulations for B. pertussis and PHA cultures, with a higher percentage of gamma delta(+) cells in the B. pertussis cultures (P < 0.001). The overall data did suggest that wP vaccination resulted in modestly better specific CD3(+) cell proliferation, and gamma delta(+) cell expansions were similar with the two vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>The aim of this study was to evaluate a possible synergism between melatonin and meloxicam in up-regulating the immune response in male Wistar rats infected with Trypanosoma cruzi during immunosuppression phenomenon, which characterizes the acute phase of the Chagas` disease. Male Wistar rats were infected with the Y strain of T. cruzi. Experiments were performed on 7, 14 and 21 days post-infection. Several immunological parameters were evaluated including gamma-interferon (IFN-gamma), interleukin-2 (IL-2), nitric oxide (NO) and prostaglandin E(2) (PGE(2)). The combined treatment with melatonin and meloxicam significantly enhanced the release of IL-2 and INF-gamma into animals` serum, when compared with the infected control groups during the course of infection. Furthermore, the blockade of PGE(2) synthesis and the increased release of NO by macrophage cells from T. cruzi-infected animals contributed to regulate the production of Th1 subset cytokines significantly reducing the parasitaemia in animals treated with the combination of both substances. Therefore, our results suggest that the association of melatonin and meloxicam was more effective in protecting animals against the harmful actions of T. cruzi infection as compared with the treatments of meloxicam or melatonin alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The course and outcome of infection with mycobacteria are determined by a complex interplay between the immune system of the host and the survival mechanisms developed by the bacilli. Recent data suggest a regulatory role of histamine not only in the innate but also in the adaptive immune response. We used a model of pulmonary Mycobacterium tuberculosis infection in histamine-deficient mice lacking histidine decarboxylase (HDC(-/-)), the histamine-synthesizing enzyme. To confirm that mycobacterial infection induced histamine production, we exposed mice to M. tuberculosis and compared responses in C57BL/6 (wild-type) and HDC(-/-) mice. Histamine levels increased around fivefold above baseline in infected C57BL/6 mice at day 28 of infection, whereas only small amounts were detected in the lungs of infected HDC(-/-) mice. Blocking histamine production decreased both neutrophil influx into lung tissue and the release of proinflammatory mediators, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha), in the acute phase of infection. However, the accumulation and activation of CD4(+) T cells were augmented in the lungs of infected HDC(-/-) mice and correlated with a distinct granuloma formation that contained abundant lymphocytic infiltration and reduced numbers of mycobacteria 28 days after infection. Furthermore, the production of IL-12, gamma interferon, and nitric oxide, as well as CD11c(+) cell influx into the lungs of infected HDC(-/-) mice, was increased. These findings indicate that histamine produced after M. tuberculosis infection may play a regulatory role not only by enhancing the pulmonary neutrophilia and production of IL-6 and TNF-alpha but also by impairing the protective Th1 response, which ultimately restricts mycobacterial growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oropharyngeal candidiasis is associated with defects in cell-mediated immunity, and is commonly seen in immunocompromised patients. We have previously shown that T-cell-deficient BALB/c nude (nu/nu) mice are extremely susceptible to oropharyngeal candidiasis, and that recovery from a chronic infection is dependent on CD4 T lymphocytes. In this study we describe the local tissue cytokine profile in lymphocyte-reconstituted immunodeficient mice and their euthymic counterparts. Mice were infected orally with 10(8) cells of the yeast Candida albicans , and oral tissues sampled on days 0, 4, 8, and 14. Nude mice were reconstituted with 3 x 10(7) naive lymphocytes following oral inoculation. Interleukin (IL)-6, interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha were identified in the oral tissues of infected euthymic mice recovering from oral infection, as well as naive controls. TNF-alpha was identified in nude oral tissue on days 4 and 8, but only after lymphocyte reconstitution. No IL-2, IL-4 or IL-10 was detected in either euthymic or athymic mice at any time-point throughout the experiment. This study confirms the functional activity of T lymphocytes in reconstituted nude mice, and suggests that TNF-alpha may be an important mediator in the recovery from oropharyngeal candidiasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is a major cause of hepatic disease and of liver transplantation worldwide. Mannan-binding lectin (MBL), encoded by the MBL2 gene, can have an important role as an opsonin and complement activating molecule in HCV persistence and liver injury. We assessed the MBL2 polymorphism in 102 Euro-Brazilian patients with moderate and severe chronic hepatitis C, paired for gender and age with 102 HCV seronegative healthy individuals. Six common single nucleotide polymorphisms in the MBL2 gene, three in the promoter (H/L, X/Y and P/Q) and three in exon 1 (A, the wild-type, and B, C or D also known as O) were evaluated using real-time polymerase chain reaction with fluorescent hybridization probes. The concentration of MBL in plasma was measured by enzyme-linked immunosorbent assay. The frequency of the YA/YO genotype was significantly higher in the HCV patients compared with the controls (P = 0.022). On the other hand, the genotypes associated with low levels of MBL (XA/XA, XA/YO and YO/YO) were decreased significantly in the patients with severe fibrosis (stage F4), when compared with the patients with moderate fibrosis (stage F2) (P = 0.04) and to the control group (P = 0.011). Furthermore, MBL2 genotypes containing X or O mutations were found to be associated with non-responsiveness to pginterferon and ribavirin treatment (P = 0.023). MBL2 polymorphisms may therefore be associated not only with the development of chronic hepatitis C, but also with its clinical evolution and response to treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Leishmune (R) vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Aracatuba, Sao Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P < 0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to evaluate the effects of immunization with soluble amastigote (AmaAg) and promastigote (ProAg) antigens from Leishmania (Viannia) shawi on the course of infection in BALB/c mice. After immunization with AmaAg, the challenged group showed greater lesion size and parasite load in the skin and lymph nodes, associated with diminished interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-gamma and nitrate levels in the supernatant of lymph node cell cultures, together with increases in transforming growth factor (TGF)-beta concentrations and humoral immune response. In contrast, immunization with ProAg led to smaller lesion size with reduced numbers of viable parasites in the skin. Protection was associated with increases in IL-12, IFN-gamma, TGF-beta and nitrates and decreases in IL-4 and IL-10 levels. Concerning humoral immune response, a significant reduction in anti-leishmania immunoglobulin G was verified in the ProAg-challenged group. Analysis of these results suggests that AmaAg induced a suppressive cellular immune response in mice, favouring the spread of infection, whereas ProAg induced partial protection associated with increased cellular immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During immune response to infectious agents, the host develops an inflammatory response which could fail to eliminate the pathogen or may become dysregulated. In this case, the ongoing response acquires a new status and turns out to be detrimental. The same elements taking part in the establishment and regulation of the inflammatory response (cytokines, chemokines, regulatory T cells and counteracting compounds like glucocorticoids) may also mediate harmful effects. Thymic disturbances seen during Trypanosoma cruzi (T. cruzi) infection fit well with this conceptual framework. After infection, this organ suffers a severe atrophy due to apoptosis-induced thymocyte exhaustion, mainly affecting the immature double-positive (DP) CD4+CD8+ population. Thymus cellularity depletion, which occurs in the absence of main immunological mediators involved in anti-T. cruzi defense, seems to be linked to a systemic cytokine/hormonal imbalance, involving a dysregulated increase in Tumor Necrosis Factor alpha (TNF-alpha) and corticosterone hormone levels. Additionally, we have found an anomalous exit of potentially autoimmune DP cells to the periphery, in parallel to a shrinkage in the compartment of natural regulatory T cells. In this context, our data clearly point to the view that the thymus is a target organ of T. cruzi infection. Preserved thymus may be essential for the development of an effective immune response against T. cruzi, but this organ is severely affected by a dysregulated circuit of proinflammatory cytokines and glucocorticoids. Also, the alterations observed in the DP population might have potential implications for the autoimmune component of human Chagas disease. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ(2)-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ(2) administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS(-/-) mice were not susceptible to 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ(2)-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-I expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ(2), whereas 15d-PGJ(2) inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ(2) suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rosiglitazone (RGZ), an oral anti-hyperglycemic agent used for non-insulin-dependent diabetes mellitus, is a high-affinity synthetic agonist for peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Both in vitro and in vivo experiments have also revealed that RGZ possesses anti-inflammatory properties. Therefore, in the present study, we investigated the anti-inflammatory effects of RGZ in a rat model of periodontal disease induced by ligature placed around the mandible first molars of each animal. Male Wister rats were divided into four groups: 1) animals without ligature placement receiving administration of empty vehicle (control); 2) animals with ligature receiving administration of empty vehicle; 3) animals with ligature receiving administration with oral RGZ (10 mg/kg/day); and 4) animals with ligature receiving administration of subcutaneous RGZ (10 mg/kg/day). Thirty days after induction of periodontal disease, the animals were sacrificed, and mandibles and gingival tissues were removed for further analysis. An in vitro assay was also employed to test the inhibitory effects of RGZ on osteoclastogenesis. Histomorphological and immunohistochemical analyses of periodontal tissue demonstrated that RGZ-treated animals presented decreased bone resorption, along with reduced RANKL expression, compared to those animals with ligature, but treated with empty vehicle. Corresponding to such results obtained from in vivo experiments, RGZ also suppressed in vitro osteoclast differentiation in the presence of RANKL in MOCP-5 osteoclast precursor cells, along with the down-regulation of the expression of RANKL-induced TRAP mRNA. These data indicated that RGZ may suppress the bone resorption by inhibiting RANKL-mediated osteoclastogenesis elicited during the course of experimental periodontitis in rats. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yellow fever (YF) vaccines (17D-204 and 17DD) are well tolerated and cause very low rates of severe adverse events (YEL-SAE), such as serious allergic reactions, neurotropic adverse diseases (YEL-AND), and viscerotropic diseases (YEL-AVD). Viral and host factors have been postulated to explain the basis of YEL-SAE. However, the mechanisms underlying the occurrence of YEL-SAE remain unknown. The present report provides a detailed immunological analysis of a 23-year-old female patient. The patient developed a suspected case of severe YEL-AVD with encephalitis, as well as with pancreatitis and myositis, following receipt of a 17D-204 YF vaccination. The patient exhibited a decreased level of expression of Fc-gamma R in monocytes (CD16, CD32, and CD64), along with increased levels of NK T cells (an increased CD3(+) CD16(+/-) CD56(+/-)/CD3(+) ratio), activated T cells (CD4(+) and CD8(+) cells), and B lymphocytes. Enhanced levels of plasmatic cytokines (interleukin-6 [IL-6], IL-17, IL-4, IL-5, and IL-10) as well as an exacerbated ex vivo intracytoplasmic cytokine pattern, mainly observed within NK cells (gamma interferon positive [IFN-gamma(+)], tumor necrosis factor alpha positive [TNF-alpha(+)], and IL-4 positive [IL-4(+)]), CD8(+) T cells (IL-4(+) and IL-5(+)), and B lymphocytes (TNF-alpha(+), IL-4(+), and IL-10(+)). The analysis of CD4(+) T cells revealed a complex profile that consisted of an increased frequency of IL-12(+) and IFN-gamma(+) cells and a decreased percentage of TNF-alpha(+), IL-4(+), and IL-5+ cells. Depressed cytokine synthesis was observed in monocytes (TNF-alpha(+)) following the provision of antigenic stimuli in vitro. These results support the hypothesis that a strong adaptive response and abnormalities in the innate immune system may be involved in the establishment of YEL-AND and YEL-AVD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When infected with Trypanosoma cruzi, Beagle dogs develop symptoms similar to those of Chagas disease in human beings, and could be an important experimental model for a better understanding of the immunopathogenic mechanisms involved in chronic chagasic infection. This study evaluates IL-10, IFN-gamma and TNF-alpha production in the sera, culture supernatant, heart and cervical lymph nodes and their correlation with cardiomegaly, cardiac inflammation and fibrosis in Beagle dogs infected with T. cruzi. Pathological analysis showed severe splenomegaly, lymphadenopathy and myocarditis in all infected dogs during the acute phase of the disease, with cardiomegaly, inflammation and fibrosis observed in 83% of the animals infected by T. cruzi during the chronic phase. The data indicate that infected animals producing IL-10 in the heart during the chronic phase and showing high IL-10 production in the culture supernatant and serum during the acute phase had lower cardiac alterations (myocarditis, fibrosis and cardiomegaly) than those with high IFN-gamma and TNF-alpha levels. These animals produced low IL-10 levels in the culture supernatant and serum during the acute phase and did not produce IL-10 in the heart during the chronic phase of the disease. Our findings showed that Beagle dogs are a good model for studying the immunopathogenic mechanism of Chagas disease, since they reproduce the clinical and immunological findings described in chagasic patients. The data suggest that the development of the chronic cardiac form of the disease is related to a strong Th1 response during the acute phase of the disease, while the development of the indeterminate form results from a blend of Th1 and Th2 responses soon after infection, suggesting that the acute phase immune response is important for the genesis of chronic cardiac lesions. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations.