982 resultados para HELICITY AMPLITUDES
Resumo:
O raio conectando dois pontos em um meio anisotrópico, homogêneo por partes e com variação lateral, é calculado utilizando-se técnicas de continuação em 3D. Se combinado com algoritmos para solução do problema de valor inicial, o método pode ser estendido para o cálculo de eventos qS1 e qS2. O algoritmo apresenta a mesma eficiência e robustez que implementações de técnicas de continuação em meios isotrópicos. Rotinas baseadas neste algoritmo têm várias aplicações de interesse. Primeiramente, na modelagem e inversão de parâmetros elásticos na presença de anisotropia. Em segundo lugar, as iterações de Newton-Raphson produzem atributos da frente de onda como vetor vagarosidade e a matrix hessiana do tempo de trânsito, quantidades que permitem determinar o espalhamento geométrico e aproximações de segunda ordem para o tempo de trânsito. Estes atributos permitem calcular as amplitudes ao longo do raio e investigar os efeitos da anisotropia no empilhamento CRS em modelos de velocidade simples.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
A aplicação das ligas com memória de forma (shape memory alloys – SMA) têm se mostrado como uma alternativa promissora no controle de vibração de máquinas e estruturas, devido principalmente aos fenômenos de memória de forma e pseudoelástico que elas apresentam. Do mesmo modo, tais ligas proporcionam grandes forças de recuperação e capacidade de amortecimento quando comparadas aos materiais tradicionais. Na literatura científica encontra-se um grande número de trabalhos que tratam da aplicação das SMA no controle de vibração em estruturas. Contudo, a aplicação desse tipo de material em máquinas rotativas ainda é um assunto pouco abordado. Nesse sentido, busca-se explorar numericamente o comportamento de atuadores baseados em ligas com memória de forma para o controle de vibração em máquinas rotativas. Na primeira análise deste trabalho um rotor tipo Jeffcott com luvas SMA em um dos mancais é utilizado. São empregadas diferentes espessuras de luvas nos estados martensítico e austenítico e as variações em termos de amplitude e frequência são então comparadas. Posteriormente, dois diferentes sistemas rotativos com dois discos e molas SMA aplicadas em um e dois mancais são estudados sob configurações variadas. As molas foram posicionadas externamente aos mancais e a temperatura de operação desses componentes é ajustada de acordo com a necessidade do controle de vibração. Além disso, foi utilizado um código computacional para a representação do comportamento termomecânico de molas SMA assim como um programa baseado no Método de Elementos Finitos (MEF) para a simulação do comportamento dinâmico dos rotores. Os resultados das análises numéricas demonstram que as SMA são eficientes no controle de vibração de sistemas rotativos devido obterem-se reduções significativas das amplitudes de deslocamento, modificações nas velocidades críticas, supressão de movimentos indesejáveis e controle das órbitas de precessão.
Resumo:
Neste trabalho iremos estudar os efeitos do potencial químico em (1 + 1) dimensões em modelos de teoria de campos a temperatura finita. Em particular, consideraremos férmions não massivos em um campo de fundo de calibre abeliano e calcularemos a ação efetiva por meio da função de n-pontos. Escreveremos a estrutura das amplitudes correspondentes e generalizaremos cálculos já existentes na literatura sem o potencial químico. Mostraremos através dos cálculos que a anomalia quiral não e afetada pela presença do potencial químico a temperatura finita. Entretanto, na ausência desse potencial as funções ímpares são nulas. Já na presença dele a temperatura finita, a função tem contribuições pares e ímpares. Mostraremos que a origem da estrutura das amplitudes e melhor vista a partir da formulação alternativa da teoria em termos dos espinores left- e right-handed. Os cálculos são também mais simples nessa formalação e alguns aspectos da teoria ficam mais claros.
Resumo:
O primeiro objetivo do presente trabalho é calcular a força quântica exata que atua sobre as fronteiras de uma cavidade, bem como o comportamento exato da densidade de energia numa cavidade não estática, onde ambas as fronteiras executam movimentos prescritos arbitrários. O modelo considerado é o do campo escalar não massivo em 1 + 1 dimensões, sendo que o campo obedece à condição de Dirichlet em cada uma das fronteiras. Considerando o vácuo como estado inicial do campo, nós mostramos que a densidade de energia em um dado ponto do espaço-tempo pode ser obtida através do traçado de uma sequência de linhas nulas, conectando o valor da densidade de energia nesse ponto a um certo valor conhecido da densidade de energia em um ponto das “zonas estáticas”. O segundo objetivo é mostrar que para movimentos específicos das fronteiras, particularmente para os quais ambas voltam às suas posições iniciais em instantes múltiplos do comprimento inicial da cavidade, o método exato por nós obtido permite encontrar soluções analíticas escritas como uma expansão em série na variável que controla as amplitudes de movimento das fronteiras. Os resultados analíticos por nós obtidos são aplicáveis a uma vasta classe de movimentos, a qual inclui a grande maioria dos casos ressonantes estudados na literatura. O terceiro objetivo do presente trabalho é investigar, através dos métodos de cálculos desenvolvidos aqui, o fenômeno da interferência na energie e na densidade de energia em cavidades com duas fronteiras móveis, obtendo fórmulas genéricas para os termos de interferência respectivos.
Resumo:
Nas bacias sedimentares da região Amazônica, a geração e o acúmulo de hidrocarboneto estão relacionados com a presença das soleiras de diabásio. Estas rochas magmáticas intrusivas possuem grandes contrastes de impedância com as rochas sedimentares encaixantes, resultando em múltiplas externas e internas, com amplitudes semelhantes às das reflexões sísmicas primárias. Estas múltiplas podem predominar sobre as informações oriundas de interfaces mais profundas, dificultando o processamento, a interpretação e o imageamento da seção de sísmica. O objetivo da presente tese é realizar a atenuação de múltiplas em seções sintéticas fontecomum (CS), através da combinação dos métodos Wiener-Hopf-Levinson de predição (WHLP) e o do empilhamento superfície-de-reflexão-comum (CRS), aqui denominando pela sigla WHLPCRS. O operador de deconvolução é calculado com as amplitudes reais do sinal sísmico e traço-a-traço, o que consideramos como uma melhor eficiência para a operação de atenuação. A identificação das múltiplas é feita na seção de afastamento-nulo (AN) simulada com o empilhamento CRS, utilizando o critério da periodicidade entre primária e suas múltiplas. Os atributos da frente de onda, obtidos através do empilhamento CRS, são utilizados na definição de janelas móveis no domínio tempo-espaço, e usados para calcular o operador WHLP-CRS. No desenvolvimento do presente trabalho, visamos evitar a inconveniência da seção processada ZO; desenhar e aplicar operadores na configuração CS; e estender o método WHL para camadas curvas.
Resumo:
Em investigações geofísicas rasas que empregam os métodos eletromagnéticos indutivos mais avançados, alvos com baixo número de indução (Low Induction Number – LIN) produzem anomalias eletromagnéticas muito baixas e de difícil interpretação. Para suprir esta deficiência, neste trabalho são estudados a aplicabilidade de campos eletromagnéticos polarizados e focalizados – POLFOCEM como fonte primária de indução. Os campos E.M. focalizados e polarizados, vertical e horizontalmente, são obtidos pelas combinações vetoriais de pares de dipolos transmissores e, ocorrem na região central entre eles. A focalização é observada nesta região na profundidade de 0,25 do espaçamento entre esses transmissores – L. Portanto, máximos acoplamentos podem ser obtidos através da seleção da polarização de acordo com a geometria do alvo, ocorrendo um aumento na densidade de fluxo magnético sobre ele e, máximas anomalias produzidas. É utilizada uma metodologia numérica para o cômputo dessas anomalias por meio da técnica dos elementos finitos para solução do problema 2,5-D. Em todos os experimentos numéricos são realizadas comparações qualitativas e quantitativas entre as respostas obtidas pelos sistemas POLFOCEM e convencional, o qual emprega um único dipolo como transmissor (dipolo-dipolo). As anomalias produzidas pelo sistema POLFOCEM, em que os dipolos transmissores são acionados simultaneamente, correspondem à soma das anomalias produzidas por cada um desses dipolos independentes, caracterizando, desta forma, a linearidade dos campos eletromagnéticos. Os experimentos numéricos são realizados para alvos prismáticos bidimensionais com três diferentes inclinações, inseridos num semi-espaço resistivo, e para as freqüências das fontes na faixa das ondas de rádio. As anomalias assimétricas no sistema convencional, que se tornam simétricas no sistema POLFOCEM, apresentam valores menores em amplitude. Contudo, aquelas anomalias tanto assimétricas quanto simétricas que se tornam anti-simétricas apresentam valores maiores. Em decorrência dessas diminuições e aumentos nas amplitudes ocorrem rotações nos diagramas de Argand, no sentido horário e anti-horário para alvos com baixos valores de condutividade, respectivamente. Em experimentos de identificação de presença de dois alvos próximos, o sistema convencional é capaz de identificá-los primeiramente, prevalecendo o seu uso.
Resumo:
O método de empilhamento sísmico CRS simula seções sísmicas ZO a partir de dados de cobertura múltipla, independente do macro-modelo de velocidades. Para meios 2-D, a função tempo de trânsito de empilhamento depende de três parâmetros, a saber: do ângulo de emergência do raio de reflexão normal (em relação à normal da superfície) e das curvaturas das frentes de onda relacionadas às ondas hipotéticas, denominadas NIP e Normal. O empilhamento CRS consiste na soma das amplitudes dos traços sísmicos em dados de múltipla cobertura, ao longo da superfície definida pela função tempo de trânsito do empilhamento CRS, que melhor se ajusta aos dados. O resultado do empilhamento CRS é assinalado a pontos de uma malha pré-definida na seção ZO. Como resultado tem-se a simulação de uma seção sísmica ZO. Isto significa que para cada ponto da seção ZO deve-se estimar o trio de parâmetros ótimos que produz a máxima coerência entre os eventos de reflexão sísmica. Nesta Tese apresenta-se fórmulas para o método CRS 2-D e para a velocidade NMO, que consideram a topografia da superfície de medição. O algoritmo é baseado na estratégia de otimização dos parâmetros de fórmula CRS através de um processo em três etapas: 1) Busca dos parâmetros, o ângulo de emergência e a curvatura da onda NIP, aplicando uma otimização global, 2) busca de um parâmetro, a curvatura da onda N, aplicando uma otimização global, e 3) busca de três parâmetros aplicando uma otimização local para refinar os parâmetros estimados nas etapas anteriores. Na primeira e segunda etapas é usado o algoritmo Simulated Annealing (SA) e na terceira etapa é usado o algoritmo Variable Metric (VM). Para o caso de uma superfície de medição com variações topográficas suaves, foi considerada a curvatura desta superfície no algoritmo do método de empilhamento CRS 2-D, com aplicação a dados sintéticos. O resultado foi uma seção ZO simulada, de alta qualidade ao ser comparada com a seção ZO obtida por modelamento direto, com uma alta razão sinal-ruído, além da estimativa do trio de parâmetros da função tempo de trânsito. Foi realizada uma nálise de sensibilidade para a nova função de tempo de trânsito CRS em relação à curvatura da superfície de medição. Os resultados demonstraram que a função tempo de trânsito CRS é mais sensível nos pontos-médios afastados do ponto central e para grandes afastamentos. As expressões da velocidade NMO apresentadas foram aplicadas para estimar as velocidades e as profundidades dos refletores para um modelo 2-D com topografia suave. Para a inversão destas velocidades e profundidades dos refletores, foi considerado o algoritmo de inversão tipo Dix. A velocidade NMO para uma superfície de medição curva, permite estimar muito melhor estas velocidades e profundidades dos refletores, que as velocidades NMO referidas as superfícies planas. Também apresenta-se uma abordagem do empilhamento CRS no caso 3-D. neste caso a função tempo de trânsito depende de oito parâmetros. São abordadas cinco estratégias de busca destes parâmetros. A combinação de duas destas estratégias (estratégias das três aproximações dos tempos de trânsito e a estratégia das configurações e curvaturas arbitrárias) foi aplicada exitosamente no empilhamento CRS 3-D de dados sintéticos e reais.
Resumo:
As medidas de amplitude, polarização e vagarosidade contem informações sobre o meio onde a propagação de onda ocorre. Esta tese investiga esses dados com objetivo de estimar as propriedades elásticas deste meio. Coeficientes de reflexão podem ser estimados das amplitudes dos dados e dependem de forma não linear dos contrastes dos parâmetros elásticos e do contraste de densidade entre os meios separados por uma interface. Quando o contraste de impedância é fraco, as aproximações lineares para a refletividade qP são mais convenientes para inversão da densidade e dos parâmetros elásticos usando as análises de amplitude versus ângulo de incidência (AVO) e amplitude versus a direção do plano de incidência (AVD). Escrevendo as equações de Zoepprittz de forma separada nos permite escrever uma solução destas equações em termos das matrizes de impedância e polarização. Usando esta solução são determinadas aproximações lineares para a refletividade da onda qP considerando fraco contraste de impedância, fraca anisotropia mas com classe de simetria de arbitrária. As linearizações são avaliadas para diferentes geometrias de aquisição e várias escolhas do meio de referência. Estas aproximações apresentam bom desempenho comparado com o valor exato do coeficiente de reflexão da onda qP e de suas ondas convertidas para incidências de até 30° e meios que obedecem à hipótese de fraca anisotropia. Um conjunto de fraturas orientado é representado efetivamente por um meio transversalmente isotrópico (TI), as aproximações lineares da refletividade da onda qP podem ser usadas para estimar a orientação de fratura. Partindo deste pressuposto este problema consiste em estimar a orientação do eixo de simetria a partir de dados de refletividade de onda qP. Este trabalho mostra que são necessários múltiplos azimutes e múltiplas incidências para se obter uma estimativa estável. Também é mostrado que apenas os coeficientes das ondas qS e qT são sensíveis ao mergulho da fratura. Foi investigada a estimativa da anisotropia local através de dados de VSP multiazimutal dos vetores de polarização e vagarosidade. Foram usadas medidas da componente vertical do vetor de vagarosidade e o vetor de polarização de ondas qP diretas e refletidas. O esquema de inversão é validado através de exemplos sintéticos considerando diferentes escolhas do vetor normal à frente de onda no meio de referência, meios de referências e geometria de aquisição. Esta análise mostra que somente um subgrupo dos parâmetros elástico pode ser estimado. Uma importante aplicação desta metodologia é o seu potencial para a determinação de classes de anisotropia. A aplicação desta metodologia aos dados do mar de Java mostra que os modelos isotrópicos e TIV são inadequados para o ajuste desses dados.
Resumo:
O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.
Resumo:
Neste trabalho apresentamos um estudo da aplicação do regularizador “Variação Total” (VT) na inversão de dados geofísicos eletromagnéticos. O regularizador VT reforça a proximidade entre os parâmetros adjacentes, mas, quando a influência de uma descontinuidade é sentida nos dados, este permite mudanças abruptas sobre os parâmetros. Isso faz com que o método seja uma alternativa válida, quando os dados observados usados na inversão provém de um ambiente geológico com uma distribuição suave de condutividade, mas que pode apresentar descontinuidades em lugares como as interfaces entre as camadas geoelétricas, como na margem de uma zona de óleo ou de um corpo de sal, que podem ser zonas muito resistivas no interior de sedimentos condutivos. Quando, devido a baixa resolução nos dados, o método não tem informações o suficiente para identificar a interface, o regularizador variação total reforça a proximidade entre os parâmetros adjacentes fazendo um transição suave entre as condutividades camadas, da mesma forma que é apresentado pela suavidade global. O método de Variação Total permite que modelos menos suaves sejam alcançados porque na norma L1 a medida de desajuste entre os pares de parâmetros adjacentes, dará o mesmo valor se a variação dos parâmetros é suave ou se a variação é abrupta, o que não é o caso se o mesmo desajuste é medido na norma L2, pois em uma distribuição suave a medida do desajuste é menor, sendo assim favorecida pela minimização desta norma. O uso deste regularizador permite uma melhor estimativa do tamanho de um corpo, seja ele resistivo ou condutivo. O trabalho está apresentado na forma de três artigos, cada um descrevendo uma etapa no desenvolvimento do problema da inversão, seguindo uma sequência de complexidade crescente no problema direto. O primeiro artigo neste trabalho é intitulado “Inversão de dados do CSEM marinho 1D de meio estratificado anisotrópico com o regularizador Variação Total”. Este descreve o passo inicial no desenvolvimento do problema: a inversão de dados do CSEM marinho de modelos estratificados 1D com anisotropia na condutividade das camadas. Este problema se presta bem para este desenvolvimento, porque tem solução computacional muito mais rápida do que o 2D, e nele já estão presentes as características principais dos dados do método CSEM marinho, como a largura muito grande da faixa de amplitudes medidas em um levantamento, e a baixa resolução, inerente às baixas frequências empregadas. A anisotropia acrescenta uma dificuldade a mais no problema, por aumentar o nível de ambiguidade nos dados e demandar ainda mais informação do que no caso puramente isotrópico. Os resultados mostram que a aplicação dos vínculos de igualdade do método VT permite a melhor identificação de uma camada alvo resistiva do que a simples aplicação dos vínculos tradicionais de suavidade. Até onde podemos aferir, esta solução se mostra superior a qualquer outra já publicada para este problema. Além de ter sido muito importante para o desenvolvimento de códigos em paralelo. O segundo artigo apresentado aqui, “Inversão de dados Magnetotelúricos com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, trata da inversão de dados do método Magnetotelúrico em ambientes 2D. Este problema demanda um esforço computacional muito maior do que o primeiro. Nele, estudamos a aplicação do método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão. A construção da matriz de sensibilidade é a etapa que demanda mais tempo no processo de inversão, e o uso do método de estados adjuntos foi capaz de reduzir muito este tempo, gerando derivadas com um bom nível de aproximação. Esta etapa da pesquisa foi fundamental pelo problema direto ser matematicamente e computacionalmente muito mais simples do que o do CSEM marinho 2D. Novamente em comparação com a aplicação do regularizador de suavidade global, o regularizador de Variação Total permitiu, neste problema, uma melhor delimitação das bordas de heterogeneidades bidimensionais. A terceira parte deste trabalho, apresentada no artigo “Inversão de dados do CSEM marinho 2.5D com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, apresenta a apliação do método de Variação Total ao problema da inversão de dados CSEM marinho 2.5D. Usamos o método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão, acelerando assim o processo de inversão. Para deixar o processo de inversão ainda mais rápido, lançamos mão da programação em paralelo com o uso de topologia. A comparação entre a aplicação do regularizador de suavidade global, e o regularizador de Variação Total permitiu, assim como nos casos anteriores, uma melhor delimitação das bordas de heterogeneidades bidimensionais.
Resumo:
Este trabalho discute dois aspectos da migração em profundidade através da continuação para baixo dos campos de onda: o tratamento de modos evanescentes e a correção da amplitude dos eventos migrados. Estes dois aspectos são discutidos em meios isotrópicos e para uma classe de meios anisotrópicos. Migrações por diferenças finitas (FD) e por diferenças finitas e Fourier (FFD) podem ser instáveis em meios com forte variação lateral de velocidade. Estes métodos utilizam aproximações de Padé reais para representar o operador que descreve a propagação de ondas descendentes. Estas abordagens não são capazes de tratar corretamente os modos evanescentes, o que pode levar à instabilidades numéricas em meios com forte variação lateral de velocidade. Uma solução possível para esse problema é utilizar aproximação de Padé complexa, que consegue melhor representar os modos evanescentes associados às reflexões pós-críticas, e neste trabalho esta aproximação é utilizada para obter algoritmos FD e híbrido FD/FFD estáveis para migração em meios transversalmente isotrópicos com eixo de simetria vertical (VTI), mesmo na presença de forte variação nas propriedades elásticas do meio. A estabilidade dos algoritmos propostos para meios VTI foi validada através da resposta ao impulso do operador de migração e pela sua aplicação na migração de dados sintéticos, em meios fortemente heterogêneos. Métodos de migração por equação de onda em meios heterogêneos não tratam corretamente a amplitude dos eventos durante a propagação. As equações de onda unidirecionais tradicionais descrevem corretamente apenas a parte cinemática da propagação do campo de onda. Assim, para uma descrição correta das amplitudes deve-se usar as equações de onda unidirecionais de amplitude verdadeira. Em meios verticalmente heterogêneos, as equações de onda unidirecionais de amplitude verdadeira podem ser resolvidas analiticamente. Em meios lateralmente heterogêneos, essas equações não possuem uma solução analítica. Mesmo soluções numéricas tendem a ser instáveis. Para melhorar a compensação de amplitude na migração, em meios com variação lateral de velocidade, é proposto uma aproximação estável para solução da equação de onda unidirecional de amplitude verdadeira. Esta nova aproximação é implementada nas migrações split-step e diferenças finitas e Fourier (FFD). O algoritmo split-step com correção de amplitude foi estendido para meios VTI. A migração pré e pós-empilhamento de dados sintéticos, em meios isotrópicos e anisotrópicos, confirmam o melhor tratamento das amplitudes e estabilidade dos algoritmos propostos.
Resumo:
A teoria dos feixes gaussianos foi introduzida na literatura sísmica no início dos anos 80 por pesquisadores russos e tchecos, e foi originalmente utilizada no cálculo do campo de ondas eletromagnéticas, baseado na teoria escalar da difração. Na teoria dos feixes gaussianos, o campo de ondas sísmicas é obtido por uma integral, cujo o integrando é constituído de duas partes, a saber: (1) as amplitudes dos campos das ondas na vizinhança do ponto de observação e (2) a função fase de cada um desses campos de ondas, que neste caso é representada por um tempo de trânsito paraxial complexo. Como ferramenta de imageamento, mais precisamente como operador de migração, os primeiros trabalhos usando feixes gaussianos datam do final da década de 80 e início dos anos 90. A regularidade dos campos de ondas descritos pelos feixes gaussianos, além de sua alta precisão em regiões singulares do modelo de velocidades, tornaram o uso de feixes gaussianos como uma alternativa híbrida viável para a migração. Nesse trabalho, unimos a flexibilidade da migração tipo Kirchhoff em profundidade em verdadeira amplitude com a regularidade da descrição do campo de ondas, representado pela sobreposição de feixes gaussianos. Como forma de controlar de forma estável quantidades usadas na construção de feixes gaussianos, utilizamos informações advindas do volume de Fresnel, mais precisamente a zona de Fresnel ao redor do ponto de reflexão e a zona de Fresnel projetada, localizada ao redor do ponto de registro do sismograma e cuja a informação se encontra nas curvas de reflexão de dados sísmico. Nosso processo de migração pode ser chamado como uma migração Kirchhoff em verdadeira amplitude usando um operador de feixes gaussianos.
Resumo:
A modelagem 2.5D consiste em simular a propagação do campo de ondas em 3D em meios com simetria de translação em uma direção. Nesta tese esta abordagem é formulada para meios elásticos e anisotrópicos com classe de simetria arbitrária e a geometria de aquisição não precisa coincidir com um plano de simetria do meio. A migração por reversão no tempo do campo de ondas é formulada e implementada através de diferenças finitas 2.5D. Para reduzir os efeitos de retro-espalhamento e melhorar a recuperação da amplitude dos eventos migrados, propomos uma nova condição de imagem para migração reversa no tempo baseada na análise assintótica da condição de imagem clássica por correlação cruzada. Experimentos numéricos indicam que a migração reversa no tempo 2.5D com a nova condição de imagem proposta, melhora a resolução da imagem em relação à migração reversa no tempo 2D e reduz acentuadamente os ruídos causados por retro-espalhamento.
Resumo:
A América do Sul apresenta várias peculiaridades geomagnéticas, uma delas, é a presença do Eletrojato Equatorial, o qual se estende de leste para oeste no Brasil ao longo de aproximadamente 3500 km. Considerando-se o fato de que a influência do Eletrojato Equatorial pode ser detectada a grandes distâncias do seu centro, isto suscita o interesse em se estudar os seus efeitos na exploração magnetotelúrica no Brasil. A influência do eletrojato equatorial na prospecção magnetotelúrica tem sido modelada para meios geológicos uni e bidimensionais valendo-se para isto de soluções analíticas fechadas e de técnicas numéricas tais como elementos finitos e diferenças finitas. Em relação aos meios geológicos tridimensionais, eles tem sido modelados na forma de "camadas finas", usando o algoritmo "thin sheet". As fontes indutoras utilizadas para simular o eletrojato equatorial nestes trabalhos, tem sido linhas de corrente, eletrojatos gaussianos e eletrojatos ondulantes. Por outro lado, o objetivo principal da nossa tese foi o modelamento dos efeitos que o eletrojato equatorial provoca em estruturas tridimensionais próprias da geofísica da prospecção. Com tal finalidade, utilizamos o esquema numérico da equação integral, com as fontes indutoras antes mencionadas. De maneira similar aos trabalhos anteriores, os nossos resultados mostram que a influência do eletrojato equatorial somente acontece em frequências menores que 10-1 Hz. Este efeito decresce com a distância, mantendo-se até uns 3000 km do centro do eletrojato. Assim sendo, a presença de grandes picos nos perfis da resistividade aparente de um semi-espaço homogêneo, indica que a influência do eletrojato é notável neste tipo de meio. Estes picos se mostram com diferente magnitude para cada eletrojato simulado, sendo que a sua localização também muda de um eletrojato para outro. Entretanto, quando se utilizam modelos geo-elétricos unidimensionais mais de acordo com a realidade, tais como os meios estratificados, percebe-se que a resposta dos eletrojatos se amortece significativamente e não mostra muitas diferenças entre os diferentes tipos de eletrojato. Isto acontece por causa da dissipação da energia eletromagnética devido à presença da estratificação e de camadas condutivas. Dentro do intervalo de 3000 km, a resposta eletromagnética tridimensional pode ser deslocada para cima ou para baixo da resposta da onda plana, dependendo da localização do corpo, da frequência, do tipo de eletrojato e do meio geológico. Quando a resposta aparece deslocada para cima, existe um afastamento entre as sondagens uni e tridimensionais devidas ao eletrojato, assim como um alargamento da anomalia dos perfis que registra a presença da heterogeneidade tridimensional. Quando a resposta aparece deslocada para baixo, no entanto, há uma aproximação entre estes dois tipos de sondagens e um estreitamento da anomalia dos perfis. Por outro lado, a fase se mostra geralmente, de uma forma invertida em relação à resistividade aparente. Isto significa que quando uma sobe a outra desce, e vice-versa. Da mesma forma, comumente nas altas frequências as respostas uni e tridimensionais aparecem deslocadas, enquanto que nas baixas frequências se mostram com os mesmos valores, com exceção dos eletrojatos ondulantes com parâmetros de ondulação α = —2 e —3. Nossos resultados também mostram que características geométricas próprias das estruturas tridimensionais, tais como sua orientação em relação à direção do eletrojato e a dimensão da sua direção principal, afetam a resposta devido ao eletrojato em comparação com os resultados da onda plana. Desta forma, quando a estrutura tridimensional é rotacionada de 90°, em relação à direção do eletrojato e em torno do eixo z, existe uma troca de polarizações nas resistividades dos resultados, mas não existem mudanças nos valores da resistividade aparente no centro da estrutura. Ao redor da mesma, porém, se percebe facilmente alterações nos contornos dos mapas de resistividade aparente, ao serem comparadas com os mapas da estrutura na sua posição original. Isto se deve à persistência dos efeitos galvânicos no centro da estrutura e à presença de efeitos indutivos ao redor do corpo tridimensional. Ao alongar a direção principal da estrutura tridimensional, as sondagens magnetotelúricas vão se aproximando das sondagens das estruturas bidimensionais, principalmente na polarização XY. Mesmo assim, as respostas dos modelos testados estão muito longe de se considerar próximas das respostas de estruturas quase-bidimensionais. Porém, os efeitos do eletrojato em estruturas com direção principal alongada, são muito parecidos com aqueles presentes nas estruturas menores, considerando-se as diferenças entre as sondagens de ambos tipos de estruturas. Por outro lado, os mapas de resistividade aparente deste tipo de estrutura alongada, revelam um grande aumento nos extremos da estrutura, tanto para a onda plana como para o eletrojato. Este efeito é causado pelo acanalamento das correntes ao longo da direção principal da estrutura. O modelamento de estruturas geológicas da Bacia de Marajó confirma que os efeitos do eletrojato podem ser detetados em estruturas pequenas do tipo "horst" ou "graben", a grandes distâncias do centro do mesmo. Assim, os efeitos do eletrojato podem ser percebidos tanto nos meios estratificados como tridimensionais, em duas faixas de freqüência (nas proximidades de 10-1 Hz e para freqüências menores que 10-3 Hz), possivelmente influenciados pela presença do embasamento cristalino e a crosta inferior, respectivamente. Desta maneira, os resultados utilizando o eletrojato como fonte indutora, mostram que nas baixas freqüências as sondagens magnetotelúricas podem ser fortemente distorcidas, tanto pelos efeitos galvânicos da estrutura tridimensional como pela presença da influência do eletrojato. Conseqüêntemente, interpretações errôneas dos dados de campo podem ser cometidas, se não se corrigirem os efeitos do eletrojato equatorial ou, da mesma forma, não se utilisarem algoritmos tridimensionais para interpretar os dados, no lugar do usual modelo unidimensional de Tikhonov - Cagniard.