969 resultados para Eletroforese em gel de campo pulsado
Resumo:
RE3+ (Eu3+, Tb3+) complexes with carboxylic acid (salicylic acid and benzoic acid) were introduced into the sol, which was prepared by the hydrolysis of tetraethoxysilane (TEOS). A sol-gel luminescent thin film (SG-LTF) was then prepared by dispersing the sol onto a silica substrate by a spin coating method. Multi-layer luminescent thin films were prepared by repeating the same process. The luminescent spectra, fluorescence lifetime and thermal stability of the SG-LTFs were investigated. For the reason of comparison polyvinylbutyral (PVB) was added into a N,N-dimethylformamide (DMF) solution in which the comparative RE3+ carboxylic acid complexes were previously dissolved to form the DMF/PVB solution and the PVB luminescent thin film (PVB-LTF) was prepared. The results show that a broad excitation band indicates the formation of RE complexes in the solid SG-LTFs. RE ions, which are restrained in the silica matrix, present longer lifetimes and higher thermal stability than that in the PVB-LTF containing the corresponding pure complexes. The different doping concentration of RE (III) complexes in the SG-LTFs and the different change of the emission intensities with the heat treatment temperature in the sol-gel thin film and the sol-gel bulk gel were also discussed in this paper.
Resumo:
An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0.2-2 mmol/L and the detection limit was approximately 0.12 mmol/L. The relative standard deviation was 5.3% (n = 6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.
Resumo:
The different poly (methyl methacrylate) (PMMA) /SiO2 hybrids were prepared through sol-gel method involving PMMA emulsion (emulsion method) and PMMA/THF solution (solution method). The samples were characterized by differential scanning calorimetry(DSC), thermogravimetry analysis(TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that PMMA/SiO2 composites in nanoscale were prepared by emulsion method, and its size of phase heterogeneity was less than that of solution method. Meanwhile, the polymer emulsion as the reactive medium was more suitable for the formation of SiO2 network.
Resumo:
A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.
Resumo:
Rare-earth and lead ions (Eu3+, Tb3+, Dy3+, Pb2+) doped Ca2Y8 (SiO4)(6)O-2 and Ca2Gd8(SiO4)(6)O-2 thin films have been dip- coated on silicon and quartz glass substrates through the sol- gel route. X- Ray diffraction (XRD), TG- DTA, scanning electron microscopy (SEM), atomic force microscopy (AFM), FT- IR and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resulting films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM and AFM micrographs, where particles with various shapes and average size of 250 nm can be resolved. Eu3+ and Tb3+ show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4) - F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime and emission intensity of Eu3+ increase with the temperature treatment from 700 to 1100 degreesC, while those of Tb3+ show a maximum at 800 degreesC. Energy transfer phenomena have been observed by activating the oxyapatite film host- lattice Ca2Gd8(SiO4)(6)O-2 with Tb3+ (Dy3+). In addition, Pb2+ can sensitize the Gd3+ sublattice in Ca2Gd8(SiO4)(6)O-2.
Resumo:
In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic-inorganic nanocomposites through a sol-gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties.
Resumo:
In this presentation, nanocrystalline YVO4:A (A=Eu3+, Dy3+, SM3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography (micro-molding in capillaries). XRD, FT-IR, AFM and optical microscope, absorption spectra, photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degrees C and the crystallinity increased with the increase of annealing temperatures. Transparent nonpattemed phosphor films were uniform and crack free, which mainly consisted of grains with an average size of 90nm. Patterned crystalline phosphor film bands with different widths (5-30 mu m) were obtained. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films due to an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in YVO4 film host. The optimum concentration for Eu3+ was determined to be 7 mol% and those for Dy3+, Sm3+, Er3+ were 2 Mol% of Y3+ in YVO4 films, respectively.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3)(.)phen: where HTTA=1-(2-thenoyl)-3,3,3-trifluoracetone and phen=1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate, the inorganic/polymer hybrid material containing Eu(TTA)(3)(.)phen has also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)(3)(.)phen.
Resumo:
The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new class of polyoxomelalate (POM)-modified electrodes is fabricated by the sol-gel technique and demonstrated for nitrite sensing. The electrode material comprises an interconnected dispersion of graphite powder and a uniform dispersion of isopolymolybdic anions (Mo8O26) in a porous methylsilicate matrix. The chemically modified electrodes showed well-defined cyclic voltammograms with three reversible redox couples in acidic aqueous solutions because of the good physicochemical compatibility of Mo8O26 and the carbon ceramic matrix. The Mo8O26-modified electrodes show good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.
Resumo:
An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Rare earth complex Eu(phen)(2)Cl-3 was introduced into a SiO2-PEG-400 hybrid material by a sol-ger method. The result indicated that Poly(ethylene glycol) (PEG) could associate with Eu3+ and change the surroundings of Eu3+ in the hybrid material, greatly improving the decay time. Transparent SiO2-PEG400 hybrid doped with a very small amount of Eu(phen)(2)Cl-3 has better mechanical properties and can retain excellent luminescence properties of the rare earth complex. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new type of inorganic-organic hybrid material incorporating carbon powder and alpha -type 2:18-molybdodiphosphate (P2Mo18) in a methyltrimethoxysilane (MTMOS) based gel has been produced by a sol-gel process and used to fabricate a chemically modified electrode. The P2Mo18-doped carbon ceramic composite electrode was characterized using SEM and cyclic voltammetry. Square-wave voltammetry with an excellent sensitivity was exploited to conveniently investigate the dependence of current and half-wave potential (E-1/2) on pH. The chemically modified electrode has some advantages over the modified film electrodes constructed by the conventional methods, such as long-term stability, reproducibility, and especially repeatability of surface-renewal by simple polishing in the event of surface fouling or dopant leaching. In addition, the modified electrode shows a good catalytic activity for the electrochemical reduction of bromate in an acidic aqueous solution. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.