977 resultados para Efficient Solutions
Resumo:
Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.
Resumo:
Tie-lines between the corundum and spinel solid solutions have been determined experimentally at 1823 K. Next, activities of FeCr2O4 and FeAl2O4 in the spinel solid solution were determined by combining the tie-line data with literature values for the activities of Cr2O3 and Al2O3 in the corundum phase. Activities and the Gibbs energy of mixing for the spinel solid solution were also obtained from a model based on cation distribution between nonequivalent crystallographic sites in the oxide lattice. The difference between the Gibbs energy of mixing obtained experimentally and from the model has been attributed to a strain enthalpy term which is relatively unchanged in magnitude from the reported at 1373 K. The integral enthalpy of mixing obtained from experimental data at 1373 and 1823 K using the second law is compared with the model result.
Resumo:
Ei saatavilla
Resumo:
The unsteady pseudo plane motions have been investigated in which each point of the parallel planes is subjected to non-torsional oscillations in their own plane and at any given instant the streamlines are concentric circles. Exact solutions are obtained and the form of the curve , the locus of the centers of these concentric circles, is discussed. The existence of three infinite sets of exact solutions, for the flow in the geometry of an orthogonal rheometer in which the above non-torsional oscillations are superposed on the disks, is established. Three cases arise according to whether is greater than, equal to or less than , where is angular velocity of the basic rotation and is the frequency of the superposed oscillations. For a symmetric solution of the flow these solutions reduce to a single unique solution. The nature of the curve is illustrated graphically by considering an example of the flow between coaxial rotating disks.
Resumo:
The flow of a micropolar fluid in an orthogonal rheometer is considered. It is shown that an infinite number of exact solutions characterizing asymmetric motions are possible. The expressions for pressure in the fluid, the components of the forces and couples acting on the plates are obtained. The effect of microrotation on the flow is brought out by considering numerical results for the case of coaxially rotating disks.
Resumo:
The test based on comparison of the characteristic coefficients of the adjancency matrices of the corresponding graphs for detection of isomorphism in kinematic chains has been shown to fail in the case of two pairs of ten-link, simple-jointed chains, one pair corresponding to single-freedom chains and the other pair corresponding to three-freedom chains. An assessment of the merits and demerits of available methods for detection of isomorphism in graphs and kinematic chains is presented, keeping in view the suitability of the methods for use in computerized structural synthesis of kinematic chains. A new test based on the characteristic coefficients of the “degree” matrix of the corresponding graph is proposed for detection of isomorphism in kinematic chains. The new test is found to be successful in the case of a number of examples of graphs where the test based on characteristic coefficients of adjancency matrix fails. It has also been found to be successful in distinguishing the structures of all known simple-jointed kinematic chains in the categories of (a) single-freedom chains with up to 10 links, (b) two-freedom chains with up to 9 links and (c) three-freedom chains with up to 10 links.
Resumo:
The coefficients of thermal expansion reported by Worlton et al. [6] in the case of zircon are given in Table II along with the present data. Although Oql > or• in both cases, the anisotropy is more marked in the case of DyV04. From Table II, it is clear that the coefficient of volume expansion (,6) is almost the same for both compounds.
Resumo:
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Resumo:
A molecular inclusion complex has been obtained from the major acetylenic acid, santalbic acid (octadec-11-en-9-ynoic acid ortrans-11-octadecen-9-ynoic acid) of the seed oil ofSantalum album L. by a simple treatment of its sodium salt with dimethyl sulfate. Aqueous solutions (0.5–1%) of the complex produce good lather and have efficient cleansing (detergent) action on grease and dirt particles.
Resumo:
A computationally efficient agglomerative clustering algorithm based on multilevel theory is presented. Here, the data set is divided randomly into a number of partitions. The samples of each such partition are clustered separately using hierarchical agglomerative clustering algorithm to form sub-clusters. These are merged at higher levels to get the final classification. This algorithm leads to the same classification as that of hierarchical agglomerative clustering algorithm when the clusters are well separated. The advantages of this algorithm are short run time and small storage requirement. It is observed that the savings, in storage space and computation time, increase nonlinearly with the sample size.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications oil general purpose multicore architectures. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on accelerators such as Graphics Processing Units (GPUs) or CellBE which support abundant parallelism in hardware. In this paper, we describe a novel method to orchestrate the execution of if StreamIt program oil a multicore platform equipped with an accelerator. The proposed approach identifies, using profiling, the relative benefits of executing a task oil the superscalar CPU cores and the accelerator. We formulate the problem of partitioning the work between the CPU cores and the GPU, taking into account the latencies for data transfers and the required buffer layout transformations associated with the partitioning, as all integrated Integer Linear Program (ILP) which can then be solved by an ILP solver. We also propose an efficient heuristic algorithm for the work-partitioning between the CPU and the GPU, which provides solutions which are within 9.05% of the optimal solution on an average across the benchmark Suite. The partitioned tasks are then software pipelined to execute oil the multiple CPU cores and the Streaming Multiprocessors (SMs) of the GPU. The software pipelining algorithm orchestrates the execution between CPU cores and the GPU by emitting the code for the CPU and the GPU, and the code for the required data transfers. Our experiments on a platform with 8 CPU cores and a GeForce 8800 GTS 512 GPU show a geometric mean speedup of 6.94X with it maximum of 51.96X over it single threaded CPU execution across the StreamIt benchmarks. This is a 18.9% improvement over it partitioning strategy that maps only the filters that cannot be executed oil the GPU - the filters with state that is persistent across firings - onto the CPU.
Resumo:
In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.
Resumo:
In this paper, two new dual-path based area efficient loop filtercircuits are proposed for Charge Pump Phase Locked Loop (CPPLL). The proposed circuits were designed in 0.25 CSM analog process with 1.8V supply. The proposed circuits achievedup to 85% savings in capacitor area. Simulations showed goodmatch of the new circuits with the conventional circuit. Theproposed circuits are particularly useful in applications thatdemand low die area.