Exact solutions of linear reaction-diffusion on a uniformly growing domain: criteria for successful colonization
Data(s) |
01/01/2015
|
---|---|
Resumo |
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0<x<L(t), where L(t) is the length of the growing domain. Comparing our exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i) the rate at which the domain elongates, (ii) the diffusivity associated with the spreading density profile, (iii) the reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t). |
Identificador | |
Publicador |
Public Library of Science (PLoS) |
Relação |
DOI:10.1371/journal.pone.0117949 Simpson, Matthew (2015) Exact solutions of linear reaction-diffusion on a uniformly growing domain: criteria for successful colonization. PLOS ONE, 10(2), e0117949.. http://purl.org/au-research/grants/ARC/FT130100148 |
Direitos |
Copyright © 2015 the Author This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
Fonte |
Institute of Health and Biomedical Innovation; School of Mathematical Sciences; Science & Engineering Faculty |
Palavras-Chave | #010200 APPLIED MATHEMATICS #Reaction diffusion #growing tissues #cell diffusion #cell proliferation #development |
Tipo |
Journal Article |