994 resultados para ETHANOL SOLUTION
Resumo:
The effect of five adjuvants (non-ionic surfactant, paraffinic oil, vegetable oil, mixture of fatty acids methyl esters plus surfactant blend, and organosilicone) on diquat efficacy was assessed on poverty brome, sterile oat, and Italian ryegrass in field and pot experiments. All tank mixtures with diquat increased diquat efficacy from 50-54% to 77-98% as for fresh weight reduction, indicating significant enhancement of diquat efficacy on grasses. The increased efficacy was most likely attributed to better droplet retention and diffusion on the leaf surfaces. When combined with non-ionic surfactant, diquat showed slightly more rapid control of grass weeds (i.e. symptoms were visible within a few hours after application).
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The effect of dexamethasone on ethanol-induced hypothermia was investigated in 3.5-month old male Wistar rats (N = 10 animals per group). The animals were pretreated with dexamethasone (2.0 mg/kg, ip; volume of injection = 1 ml/kg) 15 min before ethanol administration (2.0, 3.0 and 4.0 g/kg, ip; 20% w/v) and the colon temperature was monitored with a digital thermometer 30, 60 and 90 min after ethanol administration. Ethanol treatment produced dose-dependent hypothermia throughout the experiment (-1.84 ± 0.10, -2.79 ± 0.09 and -3.79 ± 0.15oC for 2.0, 3.0 and 4.0 g/kg ethanol, respectively, 30 min after ethanol) but only the effects of 2.0 and 3.0 g/kg ethanol were significantly antagonized (-0.57 ± 0.09 and -1.25 ± 0.10, respectively, 30 min after ethanol) by pretreatment with dexamethasone (ANOVA, P<0.05). These results are in agreement with data from the literature on the rapid antagonism by glucocorticoids of other effects of ethanol. The antagonism was obtained after a short period of time, suggesting that the effect of dexamethasone is different from the classical actions of corticosteroids
Resumo:
The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg), pentobarbital (17-33 mg/kg), and thiopental (7.5-30 mg/kg), of the benzodiazepine midazolam (10 mg/kg) or of ethanol (0.4-1.6 g/kg) administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg) administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg) treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP), which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system
Resumo:
The objective of the present experiment was to assess ethyl alcohol (ETOH) dependence brought about by a semivoluntary intermittent intake regimen in rats. Male Wistar rats weighing 150-250 g at the onset of the experiment were assigned to the following groups: 0% ETOH (N = 11), 5% ETOH (N = 20), 20% ETOH (N = 20) and 40% ETOH (N = 18). ETOH solutions were offered at the end of the day and overnight from Monday to Friday, and throughout weekends, for 90 days. The concentration of the ETOH solutions was increased in a stepwise fashion allowing the rats to get used to the taste of alcohol. Reposition of pure water was permitted during 1-h water drinking periods in the morning. Daily volume intake (± SEM) averaged 25.4 ± 0.4 ml (0% ETOH), 23.8 ± 0.6 ml (5% ETOH), 17.6 ± 0.7 ml (20% ETOH) and 17.5 ± 0.6 ml (40% ETOH). ETOH consumption differed significantly (P<0.05) among groups, averaging 4.4 ± 0.2 g kg-1 day-1 (5% ETOH), 10.3 ± 0.3 g kg-1 day-1 (20% ETOH) and 26 ± 1.2 g kg-1 day-1 (40% ETOH). Furthermore, ETOH detection in plasma 10-12 h after offering the solution indicated that its consumption in the 40% ETOH group was sufficient to override its metabolism. Overt signs of ETOH dependence, such as increased thirst, hyperactivity, puffing, hair ruffling and startle responsiveness as well as reduced drowsiness, were significantly increased in the 20% and 40% ETOH groups compared to the 0% and 5% groups. Accordingly, the model described here proved to be a useful tool for the evaluation of subtle or moderate behavioral and physical consequences of long-term ETOH intake
Resumo:
The effect of the consumption of ethanol (5%) on retinol concentration in milk was studied in the rat on day 12 after delivery, together with the evolution of dam body weight and pup growth rate. Female Wistar rats receiving alcohol (5%) in drinking water during lactation (N = 7) were compared to normal controls fed ad libitum (N = 6). The mean maternal alcohol intake was 3.96 ± 0.23 g/kg body weight per day. To determine retinol levels in milk we used the Bessey and Lowry method, modified by Araújo and Flores ((1978) Clinical Chemistry, 24: 386-392). The pups were separated from dams for a 2-4-h period, after which the dams were injected intraperitoneally with anesthetic and oxytocin. The concentration of retinol in milk was 162.88 ± 10.60 µg/dl in the control group and 60.02 ± 8.22 µg/dl in the ethanol group (P<0.05). The ethanol group consumed less food than the controls and lost a significant amount of weight during lactation. On days 8, 10 and 12, the body weight of the pups from rats given ethanol (13.46 ± 0.43, 16.12 ± 0.48 and 18.60 ± 0.91 g, respectively) were significantly lower (P<0.05) than the weight of pups from controls (15.2 ± 0.44, 18.36 ± 0.54, 20.77 ± 0.81 g). These data show that ethanol intake during the suckling period, even at low concentrations, decreases the amount of retinol in milk and, therefore, the amount available to the pups.
A chromatographic method for the production of a human immunoglobulin G solution for intravenous use
Resumo:
Immunoglobulin G (IgG) of excellent quality for intravenous use was obtained from the cryosupernatant of human plasma by a chromatographic method based on a mixture of ion-exchange, DEAE-Sepharose FF and arginine Sepharose 4B affinity chromatography and a final purification step by Sephacryl S-300 HR gel filtration. The yield of 10 experimental batches produced was 3.5 g IgG per liter of plasma. A solvent/detergent combination of 1% Tri (n-butyl) phosphate and 1% Triton X-100 was used to inactivate lipid-coated viruses. Analysis of the final product (5% liquid IgG) based on the mean for 10 batches showed 94% monomers, 5.5% dimers and 0.5% polymers and aggregates. Anticomplementary activity was 0.3 CH50/mg IgG and prekallikrein activator levels were less than 5 IU/ml. Stability at 37ºC for 30 days in the liquid state was satisfactory. IgG was stored in flasks (2.5 g/flask) at 4 to 8ºC. All the characteristics of the product were consistent with the requirements of the 1997 Pharmacopée Européenne.
Resumo:
In order to examine the relationship between anxiety and reinforcing effects of alcohol, drug-naive male Wistar rats weighing 250-300 g were classified as "anxious" and "non-anxious" in the elevated plus-maze test. A conditioned place preference test was then used to investigate the reinforcing effects of ethanol (EtOH) on these animals. On 2 alternate days, groups of "anxious", "non-anxious" and "normal" rats received intraperitoneal (ip) injections of EtOH (0.5, 1.0 or 1.5 g/kg) immediately before a 15-min confinement to the white compartment. On the 2 intervening days the same rats received ip injections of saline before confinement to the opposite compartment. On day 5, a 15-min free-choice test was carried out with no injections. Rats classified as "anxious" showed a significant, though not dose-dependent preference for all doses of ethanol compared to saline-treated animals. These data demonstrate that rats regarded as "anxious" are more sensitive to the reinforcing effects of EtOH than "non-anxious" and "normal" Wistar rats and emphasize the relevance of the basal levels of anxiety of rats when trying to detect the reinforcing effects of EtOH.
Resumo:
The widespread consumption of anorectics and combined anorectic + alcohol misuse are problems in Brazil. In order to better understand the interactive effects of ethanol (EtOH) and diethylpropion (DEP) we examined the locomotion-activating effects of these drugs given alone or in combination in mice. We also determined whether this response was affected by dopamine (DA) or opioid receptor antagonists. A total of 160 male Swiss mice weighing approximately 30 g were divided into groups of 8 animals per group. The animals were treated daily for 7 consecutive days with combined EtOH + DEP (1.2 g/kg and 5.0 mg/kg, ip), EtOH (1.2 g/kg, ip), DEP (5.0 mg/kg, ip) or the control solution coadministered with the DA antagonist haloperidol (HAL, 0.075 mg/kg, ip), the opioid antagonist naloxone (NAL, 1.0 mg/kg, ip), or vehicle. On days 1, 7 and 10 after the injections, mice were assessed in activity cages at different times (15, 30, 45 and 60 min) for 5 min. The acute combination of EtOH plus DEP induced a significantly higher increase in locomotor activity (day 1: 369.5 ± 34.41) when compared to either drug alone (day 1: EtOH = 232.5 ± 23.79 and DEP = 276.0 ± 12.85) and to control solution (day 1: 153.12 ± 7.64). However, the repeated administration of EtOH (day 7: 314.63 ± 26.79 and day 10: 257.62 ± 29.91) or DEP (day 7: 309.5 ± 31.65 and day 10: 321.12 ± 39.24) alone or in combination (day 7: 459.75 ± 41.28 and day 10: 427.87 ± 33.0) failed to induce a progressive increase in the locomotor response. These data demonstrate greater locomotion-activating effects of the EtOH + DEP combination, probably involving DA and/or opioid receptor stimulation, since the daily pretreatment with HAL (day 1: EtOH + DEP = 395.62 ± 11.92 and EtOH + DEP + HAL = 371.5 ± 6.76; day 7: EtOH + DEP = 502.5 ± 42.27 and EtOH + DEP + HAL = 281.12 ± 16.08; day 10: EtOH + DEP = 445.75 ± 16.64 and EtOH + DEP + HAL = 376.75 ± 16.4) and NAL (day 1: EtOH + DEP = 553.62 ± 38.15 and EtOH + DEP + NAL = 445.12 ± 55.67; day 7: EtOH + DEP = 617.5 ± 38.89 and EtOH + DEP + NAL = 418.25 ± 61.18; day 10: EtOH + DEP = 541.37 ± 32.86 and EtOH + DEP + NAL = 427.12 ± 51.6) reduced the locomotor response induced by combined administration of EtOH + DEP. These findings also suggest that a major determinant of combined anorectic-alcohol misuse may be the increased stimulating effects produced by the combination.
Resumo:
This thesis focuses on the development of sustainable industrial architectures for bioenergy based on the metaphors of industrial symbiosis and industrial ecosystems, which imply exchange of material and energy side-flows of various industries in order to improve sustainability of those industries on a system level. The studies on industrial symbiosis have been criticised for staying at the level of incremental changes by striving for cycling waste and by-flows of the industries ‘as is’ and leaving the underlying industry structures intact. Moreover, there has been articulated the need for interdisciplinary research on industrial ecosystems as well as the need to extend the management and business perspectives on industrial ecology. This thesis addresses this call by applying a business ecosystem and business model perspective on industrial symbiosis in order to produce knowledge on how industrial ecosystems can be developed that are sustainable environmentally and economically. A case of biogas business is explored and described in four research papers and an extended summary that form this thesis. Since the aim of the research was to produce a normative model for developing sustainable industrial ecosystems, the methodology applied in this research can be characterised as constructive and collaborative. A constructive research mode was required in order to expand the historical knowledge on industrial symbiosis development and business ecosystem development into the knowledge of what should be done, which is crucial for sustainability and the social change it requires. A collaborative research mode was employed through participating in a series of projects devoted to the development of a biogas-for-traffic industrial ecosystem. The results of the study showed that the development of material flow interconnections within industrial symbiosis is inseparable from larger business ecosystem restructuring. This included a shift in the logic of the biogas and traffic fuel industry and a subsequent development of a business ecosystem that would entail the principles of industrial symbiosis and localised energy production and consumption. Since a company perspective has been taken in this thesis, the role of an ecosystem integrator appeared as a crucial means to achieve the required industry restructuring. This, in turn, required the development of a modular and boundary-spanning business model that had a strong focus on establishing collaboration among ecosystem stakeholders and development of multiple local industrial ecosystems as part of business growth. As a result, the designed business model of the ecosystem integrator acquired the necessary flexibility in order to adjust to local conditions, which is crucial for establishing industrial symbiosis. This thesis presents a normative model for the development of a business model required for creating sustainable industrial ecosystems, which contributes to approaches at the policy-makers’ level, proposed earlier. Therefore, this study addresses the call for more research on the business level of industrial ecosystem formation and the implications for the business models of the involved actors. Moreover, the thesis increases the understanding of system innovation and innovation in business ecosystems by explicating how business model innovation can be the trigger for achieving more sustainable industry structures, such as those relying on industrial symbiosis.
Resumo:
We evaluated the porphyrinogenic ability of ethanol (20% in drinking water) per se, its effect on the development of sporadic porphyria cutanea tarda induced by hexachlorobenzene in female Wistar rats (170-190 g, N = 8/group), and the relationship with hepatic damage. Twenty-five percent of the animals receiving ethanol increased up to 14-, 25-, and 4.5-fold the urinary excretion of delta-aminolevulinate, porphobilinogen, and porphyrins, respectively. Ethanol exacerbated the precursor excretions elicited by hexachlorobenzene. Hepatic porphyrin levels increased by hexachlorobenzene treatment, while this parameter only increased (up to 90-fold) in some of the animals that received ethanol alone. Ethanol reduced the activities of uroporphyrinogen decarboxylase, delta-aminolevulinate dehydrase and ferrochelatase. In the ethanol group, many of the animals showed a 30% decrease in uroporphyrinogen activity; in the ethanol + hexachlorobenzene group, this decrease occurred before the one caused by hexachlorobenzene alone. Ethanol exacerbated the effects of hexachlorobenzene, among others, on the rate-limiting enzyme delta-aminolevulinate synthetase. The plasma activities of enzymes that are markers of hepatic damage were similar in all drug-treated groups. These results indicate that 1) ethanol exacerbates the biochemical manifestation of sporadic hexachlorobenzene-induced porphyria cutanea tarda; 2) ethanol per se affects several enzymatic and excretion parameters of the heme metabolic pathway; 3) since not all the animals were affected to the same extent, ethanol seems to be a porphyrinogenic agent only when there is a predisposition, and 4) hepatic damage showed no correlation with the development of porphyria cutanea tarda.
Resumo:
Several human studies suggest that light-to-moderate alcohol consumption is associated with enhanced insulin sensitivity, but these studies are not free of conflicting results. To determine if ethanol-enhanced insulin sensitivity could be demonstrated in an animal model, male Wistar rats were fed a standard chow diet and received drinking water without (control) or with different ethanol concentrations (0.5, 1.5, 3, 4.5 and 7%, v/v) for 4 weeks ad libitum. Then, an intravenous insulin tolerance test (IVITT) was performed to determine insulin sensitivity. Among the ethanol groups, only the 3% ethanol group showed an increase in insulin sensitivity based on the increase of the plasma glucose disappearance rate in the IVITT (30%, P<0.05). In addition, an intravenous glucose tolerance test (IVGTT) was performed in control and 3% ethanol animals. Insulin sensitivity was confirmed in 3% ethanol rats based on the reduction of insulin secretion in the IVGTT (35%, P<0.05), despite the same glucose profile. Additionally, the 3% ethanol treatment did not impair body weight gain or plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the present study established that 3% ethanol in the drinking water for 4 weeks in normal rats is a model of increased insulin sensitivity, which can be used for further investigations of the mechanisms involved.
Resumo:
We studied the effects of ethanol on the levels of norepinephrine, dopamine, serotonin (5-HT) and their metabolites as well as on D1- and D2-like receptors in the rat striatum. Ethanol (2 or 4 g/kg, po) was administered daily by gavage to male Wistar rats and on the 7th day, 30 min or 48 h after drug administration, the striatum was dissected for biochemical assays. Monoamine and metabolite concentrations were measured by HPLC and D1- and D2-like receptor densities were determined by binding assays. Scatchard analyses showed decreases of 30 and 43%, respectively, in D1- and D2-like receptor densities and no change in dissociation constants (Kd) 48 h after the withdrawal of the dose of 4 g/kg. Ethanol, 2 g/kg, was effective only on the density of D2-like receptors but not on Kd of either receptor. Thirty minutes after the last ethanol injection (4 g/kg), decreases of D2 receptor density (45%) as well as of Kd values (34%) were detected. However, there was no significant effect on D1-like receptor density and a 46% decrease was observed in Kd. An increase in dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), a decrease in norepinephrine, and no alteration in 5-HT levels were demonstrated after 48-h withdrawal of 4 g/kg ethanol. Similar effects were observed in dopamine and DOPAC levels 30 min after drug administration. No alteration in norepinephrine concentration and a decrease in 5-HT levels were seen 30 min after ethanol (4 g/kg) administration. Our findings indicate the involvement of the monoaminergic system in the responses to ethanol.
Resumo:
The effects of various hypertonic solutions on the intraventricular conduction, ventricular repolarization and the arrhythmias caused by the intravenous (iv) injection of bupivacaine (6.5 mg/kg) were studied in sodium pentobarbital-anesthetized mongrel dogs. Hypertonic solutions, given iv 5 min before bupivacaine, were 7.5% (w/v) NaCl, 5.4% (w/v) LiCl, 50% (w/v) glucose (2,400 mOsm/l, 5 ml/kg), or 20% (w/v) mannitol (1,200 mOsm/l, 10 ml/kg). Bupivacaine induced severe arrhythmias and ventricular conduction and repolarization disturbances, as reflected by significant increases in QRS complex duration, HV interval, IV interval and monophasic action potential duration, as well as severe hemodynamic impairment. Significant prevention against ventricular electrophysiologic and hemodynamic disturbances and ventricular arrhythmias was observed with 7.5% NaCl (percent increase in QRS complex duration: 164.4 ± 21.8% in the non-pretreated group vs 74.7 ± 14.1% in the pretreated group, P<0.05; percent increase in HV interval: 131.4 ± 16.1% in the non-pretreated group vs 58.2 ± 7.5% in the pretreated group, P<0.05; percent increase in monophasic action potential duration: 22.7 ± 6.8% in the non-pretreated group vs 9.8 ± 6.3% in the pretreated group, P<0.05; percent decrease in cardiac index: -46 ± 6% in the non-pretreated group vs -28 ± 5% in the pretreated group, P<0.05). The other three hypertonic solutions were ineffective. These findings suggest an involvement of sodium ions in the mechanism of hypertonic protection.