748 resultados para Deglaciation
Resumo:
High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.
Resumo:
Sediment core PS2458 from the Laptev Sea continental margin (983-m water depth) stems from a position close to the paleoriver mouth of Lena and Yana rivers. It was dated by AMS-14C and analyzed in high resolution for oxygen isotopes of planktic foraminifers. Except the uppermost 100 cm and possibly the lowermost meter of the 8-m-long core, the sediments were deposited during the last deglaciation (14.5-8.0 cal-ka). According to 210Pb data, the uppermost 100 cm represents only the last 200 years. Planktic foraminifers are present throughout the dated deglacial interval, with the exception of a short time after ca. 13 cal-ka. Taking into account the global "ice volume effect" on the oxygen isotopic composition of the foraminifers, the isotopic record is considered to reflect salinity changes which were influenced by variable freshwater runoff and a growing marine influence during the postglacial transgression of the Laptev Sea shelf. The most conspicuous feature in the isotopic record is an outstanding peak dated to ca. 13 cal-ka. It is proposed that it represents a rapid outburst of large amounts of freshwater, possibly from an ice-dammed lake in the hinterland. Possible correlations to the onset of the cool Younger Dryas event in the northern hemisphere are discussed.
Resumo:
This chapter provides a review of proxy data from a variety of natural archives sampled in the Wollaston Forland region, central Northeast Greenland. The data are used to describe long-term environmental and climatic changes. The focus is on reconstructing the Holocene conditions particularly in the Zackenberg area. In addition, this chapter provides an overview of the archaeological evidence for prehistoric occupation of the region. The Zackenberg area has been covered by the Greenland Ice Sheet several times during the Quaternary. At the Last Glacial Maximum (LGM, about 22,000 years BP), temperatures were much lower than at present, and only very hardy organisms may have survived in the region, even if ice-free areas existed. Marked warming at around 11,700 years BP led to ice recession, and the Zackenberg area was deglaciated in the early Holocene, prior to 10,100 years BP. Rapid early Holocene land emergence was replaced by a slight transgression in the late Holocene. During the Holocene, summer solar insolation decreased in the north. Following deglaciation of the region, summer temperatures probably peaked in the early to mid-Holocene, as indicated by the occurrence of a southern beetle species. However, the timing for the onset of the Holocene thermal maximum is rather poorly constrained because of delayed immigration of key plant species. During the thermal maximum, the mean July temperature was at least 2-3°C higher than at present. Evidence for declining summer temperatures is seen at around 5500, 4500 and 3500 years BP. The cooling culminated during the Little Ice Age that peaked about 100-200 years ago. The first plants that immigrated to the region were herbs and mosses. The first dwarf shrubs arrived in Northeast Greenland prior to 10,400 years BP, and dwarf birch arrived around 8800 years BP. The first people arrived about 4500 years BP, but the region was depopulated several times before the last people disappeared some time after 1823 AD, perhaps as a consequence of poor hunting conditions during the peak of the Little Ice Age.
Resumo:
Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones, and total organic carbon in sediments from the continental margins of southern Chile, northwest Africa, and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000-4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 years) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2 sigma error or better) in the NW African and South China Sea sediments. Total organic matter and alkenone ages were similar off Namibia (age difference TOC alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of preaged terrigenous material. In the South China Sea, total organic carbon is significantly (2000-3000 years) older owing to greater inputs of preaged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as seafloor morphology, shelf width, and sediment composition, may control the age of co-occurring sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregates is a key process.
Resumo:
Stable oxygen and carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry 14C datings were carried out on cores from north of 85°N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to ~14-12 14C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.
Resumo:
he oxygen minimum zone (OMZ) off Vancouver Island was more oxygen depleted relative to modern conditions during the Allerød (~13.5 to 12.6 calendar kyr) and again from ~11 to 10 kyr. The timing of OMZ intensification is similar to that seen throughout the North Pacific, although the onset appears to have been delayed by ~1500 years off Vancouver Island. Radiocarbon dating of coeval benthic and planktonic foraminifera shows that between 16.0 and 12.6 kyr the age contrast between surface and intermediate waters (920 m depth) off Vancouver Island was similar to, or slightly less than, that today. There is no evidence of an increased age difference (i.e., decreased ventilation) during the deglaciation, particularly during the Allerød. However, sedimentary marine organic carbon concentration and mass accumulation rate increased substantially in the Allerød, suggesting that increased organic matter export was the principal cause of late Pleistocene OMZ intensification off Vancouver Island.
Resumo:
Here we present a detailed multi-proxy record of the climate and environmental evolution at Lake El'gygytgyn, Far East Russian Arctic during the period 430-395 ka covering the marine isotope stage (MIS) 12/11 transition and the thermal maximum of super interglacial MIS 11c. The MIS 12/11 transition at Lake El'gygytgyn is characterized by initial warming followed by a cold reversal implying similarities to the last deglaciation. The thermal maximum of MIS 11c is characterized by full and remarkably stable interglacial conditions with mean temperatures of the warmest month (MTWM) ranging between ca. 10-15 °C; annual precipitation (PANN) ranging between ca. 300-600 mm; strong in-lake productivity coinciding with dark coniferous forests in the catchment; annual disintegration of the lake ice cover; and full mixis of the water column. Such conditions persisted, according to our age model, for ca. 27 ± 8 kyr between ca. 425-398 ka. The Lake El'gygytgyn record closely resembles the climate pattern recorded in Lake Baikal (SE Siberia) sediments and Antarctic ice cores, implying interhemispheric climate connectivity during MIS 11c.
Resumo:
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.
Resumo:
In this study we present a sea surface temperature (SST) record from the western Arabian Sea for the last 20,000 years. We produced centennial-scale d18O and Mg/Ca SST time series of core NIOP929 with focus on the glacial-interglacial transition. The western Arabian Sea is influenced by the seasonal NE and SW monsoon wind systems. Lowest SSTs occur during the SW monsoon season because of upwelling of cold water, and highest SSTs can be found in the low-productivity intermonsoon season. The Mg/Ca-based temperature record reflects the integrated SST of the SW and NE monsoon seasons. The results show a glacial-interglacial SST difference of ~2°C, which is corroborated by findings from other Arabian Sea cores. At 19 ka B.P. a yet undescribed warm event of several hundred years duration is found, which is also reflected in the d18O record. A second centennial-scale high SST/low d18O event is observed at 17 ka B.P. This event forms the onset of the stepwise yet persistent trend toward Holocene temperatures. Highest Mg/Ca-derived SSTs in the NIOP929 record occurred between 13 and 10 ka B.P. Interglacial SST is ~24°C, indicating influence of upwelling. The onset of Arabian Sea warming occurs when the North Atlantic is experiencing minimum temperatures. The rapid temperature variations at 19, 17, and 13 ka B.P. are difficult to explain with monsoon changes alone and are most likely also linked to regional hydrographic changes, such as trade wind induced variations in warm water advection.
Resumo:
Oxygen isotope records, radiocarbon AMS data, carbonate and opal stratigraphy, sediment magnetic susceptibility, tephrachronology, and paleontological results were used to obtain detailed sediment stratigraphy and an age model for the studied cores. For studying sea-ice sedimentation an analysis of lithogenic grain number in >0.15 mm grain size fraction of bottom sediments was carried out. For quantitative estimation of intensity ice-rafting debris sedimentation number of IRD particles per sq cm per ka was calculated. Obtained results allowed to plot IRD AR distribution for the first oxygen isotope stage (0-12.5 14C ka, 14C) and for the second stage (12.5-24 14C ka). The first stage was subdivided into the latest deglaciation and the beginning of Holocene (6-12.5 14C ka) (transitive period), when the sea level was changing significantly, and the second part of Holocene (0-6 14C ka), when climate conditions and the sea level were similar to modern estimates. Data clearly show strong increase in ice formation in the glacial Sea of Okhotsk and its extent in the middle part of the sea. Average annual duration of ice coverage during glaciation was longer than that for interglaciation. However the sea ice cover was not continuous all the year round and disappeared in summer time except the far northwestern part of the sea.
Resumo:
This study focuses on sedimentological investigations of sediment cores recovered during the international Arctic'91, expeditions with the German research ice breaker RV "Polarstern" to the European sector of the Arctic Ocean. Here, we deduce the last glacial/interglacial changes in transport mechanism and sedimentation from the clay mineral group smectite. We choose the smectites as an example of how sediment mineralogy can be linked with particular source regions (the Kara and Laptev seas), distinct transport mechanism (sea ice and surface currents) and sedimentation processes. Smectite contents in Arctic sediments discussed for two time slices, including the Last Glacial Maximum (LGM), and the last deglaciation (Termination I), reveal the highest variability subsequent to the retreat of the Eurasian ice sheets. Our results show that smectite anomalies in the Eurasian Basin are associated with distinct meltwater pulses and occurred around 13.5-13.0 14C ka B.P. Compelling evidence is provided that these anomalies are deduced from sea-ice entrained sediments from the eastern Kara Sea that entered the Arctic Ocean after ice-sheet break-up and eventually flooding of the Kara Sea. We propose that smectite anomalies in sediments of the eastern Arctic Ocean can be utilized to identify deglacial events and to help decipher configurations of the Eurasian ice sheets. The identification of smectite maxima along the modern sea-ice edge in the Eurasian Basin further indicates biologically enhanced sedimentation from melting sea ice allowing the reconstruction of seasonally open water in the region. Hence, considering the poor preservation conditions of primary paleoceanographic proxies in the Arctic Ocean, the clay mineral contents, particularly the smectite group, may be one alternative tool for paleoclimatic reconstruction in the Eurasian Basin.
Resumo:
ODP Site 798 on the Oki Ridge in the Southern Japan Sea yielded the first continuous and well-preserved record of Pleistocene planktonic foraminifers in the Northwestern Pacific Ocean region. Quantitative analysis of planktonic foraminifers completed for 122 samples from the 200-m-thick Pleistocene section cored at ODP Site 798 provides a proxy record of variations in sea-surface temperature, productivity, and circulation during the past 1.6 m.y. in an area beneath the track of the Tsushima Current. Faunal census data allow recognition of five distinct assemblages: (1) type A assemblages dominated by sinistrally coiling forms of Neogloboquadrina pachyderma representing polar-subpolar surface temperatures, (2) type B assemblages dominated by Globigerina bulloides and thought to represent periods of increased surface productivity and upwelling, (3) type C assemblages marked by significant abundances of dextrally coiling forms of N. pachyderma thought to represent the warm transitional waters of the Tsushima Current, (4) type D assemblages distinguished by relatively high percentages of dextral N. pachyderma and Globorotalia inflata that also represent warmer surface temperatures and increased flow of the Tsushima Current, and (5) type E assemblages marked by relatively large numbers of the delicate species Globigerina quinqueloba and Globigerinita spp., indicative of exceptional preservation conditions and/or episodic high production of these taxa. Early and middle Pleistocene coiling patterns of Neogloboquadrina pachyderma at Site 798 can be correlated with Pleistocene coiling trends and planktonic foraminiferal datums established in the onshore Oga Peninsula sequence of Northern Honshu and open-ocean N. pachyderma coiling dominance shifts in the North Pacific region. A sustained early Pleistocene warm period recognized in both the Oga Peninsula sequence and the Northern Pacific can clearly be recognized at Site 798. In addition, the late Pleistocene planktonic foraminiferal record at Site 798 shows good correlation with glaciation/deglaciation events for the Northern Hemisphere as delineated by oxygen isotopes and represents the first detailed analysis of Pleistocene sea-surface temperature changes in the Northwestern Pacific Ocean region.
Resumo:
Recent intensification of wind-driven upwelling of warm upper circumpolar deep water (UCDW) has been linked to accelerated melting of West Antarctic ice shelves and glaciers. To better assess the long term relationship between UCDWupwelling and the stability of theWest Antarctic Ice Sheet, we present a multi-proxy reconstruction of surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula (WAP), through the Holocene. A combination of sedimentological, diatom and foraminiferal records are, for the first time, presented together to infer a decline in UCDW influence within Marguerite Bay through the early to mid Holocene and the dominance of cyclic forcing in the late Holocene. Extensive glacial melt, limited sea ice and enhanced primary productivity between 9.7 and 7.0 ka BP is considered to be most consistent with persistent incursions of UCDW through Marguerite Trough. From 7.0 ka BP sea ice seasons increased and productivity decreased, suggesting that UCDW influence within Marguerite Bay waned, coincident with the equatorward migration of the Southern Hemisphere Westerly Winds (SWW). UCDW influence continued through the mid Holocene, and by 4.2 ka BP lengthy sea ice seasons persisted within Marguerite Bay. Intermittent melting and reforming of this sea ice within the late Holocene may be indicative of episodic incursions of UCDW into Marguerite Bay during this period. The cyclical changes in the oceanography within Marguerite Bay during the late Holocene is consistent with enhanced sensitively to ENSO forcing as opposed to the SWW-forcing that appears to have dominated the early to mid Holocene. Current measurements of the oceanography of the WAP continental shelf suggest that the system has now returned to the early Holocene-like oceanographic configuration reported here, which in both cases has been associated with rapid deglaciation.
Resumo:
Oxygen isotope measurements in Greenland ice demonstrate that a series of rapid warm-cold oscillations -called Dansgaard-Oeschger events- punctuated the last glaciation (Dansgard et al., 1993, doi:10.1038/364218a0). Here we present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard-Oeschger events (Broecker et al., 1988, doi:10.1016/0033-5894(88)90082-8; 1990, doi:10.1029/PA005i004p00469). Moreover, we show that between 20 and 80 kyr ago, the shifts in ocean-atmosphere temperature are bundled into cooling cycles, lasting on average 10 to 15 kyr, with asymmetrical saw-tooth shapes. Each cycle culminated in an enormous discharge of icebergs into the North Atlantic (a 'Hein-rich event' (Bond et al., 1992, doi:10.1038/360245a0; Broecker et al., 1992, doi:10.1007/BF00193540), followed by an abrupt shift to a warmer climate. These cycles document a previously unrecognized link between ice sheet behaviour and ocean-atmosphere temperature changes. An important question that remains to be resolved is whether the cycles are driven by external factors, such as orbital forcing, or by inter-nal ice-sheet dynamics.
Resumo:
Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.