744 resultados para Bessel polynomials
Resumo:
In this paper we give an example of a nonlattice self-similar fractal string such that the set of real parts of their complex dimensions has an isolated point. This proves that, in general, the set of dimensions of fractality of a fractal string is not a perfect set.
Resumo:
This paper proves that the real projection of each simple zero of any partial sum of the Riemann zeta function ζn(s):=∑nk=11ks,n>2 , is an accumulation point of the set {Res : ζ n (s) = 0}.
Resumo:
We investigated the diffraction behavior of plasmonic Bessel beams propagating in metal-dielectric stratified materials and wire media. Our results reveal various regimes in which polarization singularities are selectively maintained. This polarization-pass effect can be controlled by appropriately setting the filling factor of the metallic inclusions and its internal periodic distribution. These results may have implications in the development of devices at the nanoscale level for manipulation of polarization and angular momentum of cylindrical vector beams.
Resumo:
In this paper, it is showed that, given an integer number n ≥ 2, each zero of an exponential polynomial of the form w1az1+w2az2+⋯+wnazn, with non-null complex numbers w 1,w 2,…,w n and a 1,a 2,…,a n , produces analytic solutions of the functional equation w 1 f(a 1 z) + w 2 f(a 2 z) + ... + w n f(a n z) = 0 on certain domains of C, which represents an extension of some existing results in the literature on this functional equation for the case of positive coefficients a j and w j.
Resumo:
In this paper, we introduce a formula for the exact number of zeros of every partial sum of the Riemann zeta function inside infinitely many rectangles of the critical strips where they are situated.
Resumo:
In this paper it is shown that a conjecture of Lapidus and van Frankenhuysen of 2003 on the existence of a vertical line such that the density of the complex dimensions of nonlattice fractal strings with M scaling ratios off this line vanishes in the limit as M→∞, fails on the class of nonlattice self-similar fractal strings.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Delfi Batavorum vernacule Delft, F. de Wit excudit. It was published ca. 1695. Scale [ca. 1:3,800]. Covers a portion of Delft, Netherlands. Map in Latin and Dutch. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Dutch National Grid: RD (Rijksdriehoekstelsel) GCS Amersfoort (Bessel 1841) coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, built-up areas and selected buildings, fortifications, ground cover, and more. Includes also index.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Dordracum vulgo Dortt, F. de Wit excudit. It was published ca. 1695. Scale [ca. 1:4,830]. Covers a portion of Dordrecht, Netherlands. Map in Latin and Dutch.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Dutch National Grid: RD (Rijksdriehoekstelsel) GCS Amersfoort (Bessel 1841) coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, built-up areas and selected buildings, fortifications, ground cover, and more. Includes also index.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Harlemum vulgo Haerlem, F. de Wit excudit. It was published ca. 1695. Scale [ca. 1:3,862]. Covers a portion of Haarlem, Netherlands. Map in Latin and Dutch. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Dutch National Grid: RD (Rijksdriehoekstelsel) GCS Amersfoort (Bessel 1841) coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, built-up areas and selected buildings, fortifications, canals, ground cover, and more. Includes also index.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Lugduni Batavorum vulgo Leyden sic ultimo amplificati delineatio, F. de Wit excudit. It was published ca. 1695. Scale [ca. 1:3,490]. Covers a portion of Leiden, Netherlands. Map in Latin and Dutch.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Dutch National Grid: RD (Rijksdriehoekstelsel) GCS Amersfoort (Bessel 1841) coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, built-up areas and selected buildings, fortifications, canals, ground cover, and more. Includes also index.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan tres exact de la fameuse ville marchande d'Amsterdam, gravée et mis au jour par Henry de Leth a l'enseigne du Pecheur. It was published by Henry de Leth in 1735. Scale [ca. 1:68,000]. Map in French and Dutch. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Dutch National Grid: RD (Rijksdriehoekstelsel) GCS Amersfoort (Bessel 1841) coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, bridges, drainage, canals, wharves, docks, built-up areas and selected buildings, fortification, windmills, and more. Relief is shown pictorially. Includes indexes and inset map: Caarte von Amstelland. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: [Plan de la grande & fameuse ville marchande d'Amsterdam = Plan van de wyd vermaarde en beroemde koop stad Amsterdam, mise au jour par Ies Iean Covens & Corneille Mortier avec privilege de Mess.rs les Etats Generaux des Provinces Unies = nieuwelks uyt gegeven door Ioannes Covens en Cornelis Mortier met previl. van de Staaten Generaal]. It was published by Iean Covens & Corneille Mortier ca. 1780. Scale [1:53,000]. Map in Dutch and French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Dutch National Grid: RD (Rijksdriehoekstelsel) GCS Amersfoort (Bessel 1841) coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, bridges, drainage, canals, wharves, docks, built-up areas and selected buildings pictorially, fortification, water mills, and more. Relief is shown by hachures. Includes indexes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).
Resumo:
cprplot2 is a variation of official Stata's cprplot and is used for graphing component-plus-residual plots (a.k.a. partial residual plots). Additional features (compared to cprplot): (1) cprplot2 can handle variables that enter the model repeatedly via different transformations (for example, polynomials). (2) cprplot2 can display component-plus-residual plots using the original units for transformed variables in the model. (3) A wrapper is provided to quickly display several component-plus-residual plots in a single image.
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).