987 resultados para ARTIFICIAL LESION FORMATION
Resumo:
We report on the formation of tetrahydrofuran clathrate hydrate studied by x-ray Raman scattering measurements at the oxygen K edge. A comparison of x-ray Raman spectra measured from water-tetrahydrofuran mixtures and tetrahydrofuran hydrate at different temperatures supports stochastic hydrate formation models rather than models assuming hydrate precursors. This is confirmed by molecular dynamics simulations and density functional theory calculations of x-ray Raman spectra. In addition, changes in the spectra of tetrahydrofuran hydrate with temperatures close to the hydrate's dissociation temperature were observed and may be connected to changes in hydrate's local structure due to the formation of hydrogen bonds between guest and water molecules.
Resumo:
The calculation of the transitional boundary layer requires estimates of the extent of the transition zone, which in turn depends on the rate at which turbulent spots are formed. This rate has been found to scale with local boundary layer thickness and viscosity, and the resulting nondimensional group (called crumble) is a function of the pressure gradient, among other parameters. Available experimental data are analyzed to show that the crumble increases slowly with increasing favorable pressure gradients, being about four times as large as in constant-pressure flow when the Thwaites pressure gradient parameter at the effective origin of the resulting turbulent boundary layer is 0.1 and when transition is driven by free-stream turbulence.
Resumo:
Menthofuran (II, 4,5,6,7-tetrahydro-3,6-dimethyl benzofuran), the proximate toxin of R-(+)-pulegone (I), was administered orally to rats (200 mg/kg of body weight/day) for three days and the urinary metabolites were investigated. Among the several metabolites formed, two of them viz. 4-Hydroxy-4-methyl-2-cyclohexenone (VII) and p-cresol (VIII) were indentified. In support of the formation of these metabolites, it has been demonstrated that phenobarbital induced rat liver microsomes readily convert 4-methyl-2-cyclohexenone (V) to 4-hydroxy-4-methyl-2-cyclohexenone (VII) and p-cresol (VIII) in the presence of NADPH and O2. Possible mechanism for the formation of these two metabolites (VII, VIII) from menthofuran (II) has been proposed.
Resumo:
Thermal, spectroscopic and electrical properties of lead pyrophosphate glass prepared by melt quenching have been examined. A model based on the structural disproportionation of the P2O 7 4− ions has been proposed and is shown to consistently explain all the observations. The equilibrium of various anionic species has been discussed on the basis of their electronegativities which are in turn related to their basicities.
Resumo:
Reaction of 6-Image -butyl-1-bromomethyl-2-(2-tetrahydropyranyloxy)-naphthalene2c with tetrachlorocatechol (TCC) in acetone in presence of K2CO3 gave diastereomers 6c and 7c. A mechanism (Scheme-1) invoking the base induced cleavage of the pyranyl ether 2 to 1,2-naphthoquinone-1-methide 8 as the first step has been postulated. The cleavage of the pyranyl ether linkage in 2 to give dimers 4 and 5 of 1,2-naphthoquinone-1-methide has been demonstrated with different bases. 1,2-Naphthoquinone-1-methide 8, thus generated, undergoes Michael addition with TCC followed by elimination of chloride ions to give a diketone, which further undergoes aldolisation with acetone to give diastereomers 6 and 7. Michael reaction of 8, generated Image from pyranyl ethers 2a-c, with tetrabromocatechol (TBC) under similar-reaction conditions gave the expected monobromo compounds 6h, 6i, 6k, 7n, 7n and 7q. The last step in the proposed mechanism, Image ., aldolisation has also been demonstrated using different ketonic solvents. Thus, reaction of 2a-c with TCC/TBC in diethyl ketone/methyl ethyl ketone under similar reaction conditions gave the expected compounds 6 and 7.
Resumo:
The Gibbs' energies of formation of BaCuO2, Y2Cu2O5 and Y2BaCuO5 from component oxides have been measured using solid state galvanic cells incorporating CaF2 as the solid electrolyte under pure oxygen at a pressure of 1.01 x 10(5) Pa Because the superconducting compound YBa2Cu3O7-delta coexists with any two of the phases CuO, BaCuO2 and Y2BaCuO5, the data on BaCuO2 and Y2BaCuO5 obtained in this study provide the basis for the evaluation of the Gibbs' energy of formation of the 1-2-3 compound at high temperatures.
Resumo:
A key step in the triacylglycerol (TAG) biosynthetic pathway is the final acylation of diacylglycerol (DAG) by DAG acyltransferase. In silico analysis has revealed that the DCR (defective in cuticular ridges) (At5g23940) gene has a typical HX4D acyltransferase motif at the N-terminal end and a lipid binding motif VX(2)GF at the middle of the sequence. To understand the biochemical function, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to acylate DAG specifically in an acyl-CoA-dependent manner. Overexpression of At5g23940 in a Saccharomyces cerevisiae quadruple mutant deficient in DAG acyltransferases resulted in TAG accumulation. At5g23940 rescued the growth of this quadruple mutant in the oleate-containing medium, whereas empty vector control did not. Lipid particles were localized in the cytosol of At5g23940-transformed quadruple mutant cells, as observed by oil red O staining. There was an incorporation of 16-hydroxyhexadecanoic acid into TAG in At5g23940-transformed cells of quadruple mutant. Here we report a soluble acyl-CoA-dependent DAG acyltransferase from Arabidopsis thaliana. Taken together, these data suggest that a broad specific DAG acyltransferase may be involved in the cutin as well as in the TAG biosynthesis by supplying hydroxy fatty acid.
Resumo:
The reactions of halogenocyclotetraphosphazatetraenes N4P4X8, with nucleophiles have received little attention and only the reactions of the octachloride, N4P4Cl8, with amines have been investigated in any detail.1 Millington and Sowerby2 studied the reaction of N4P4Cl8 with dimethylamine and isolated the derivatives, N4P4Cl8-n (NMe2)n, n = 2,3,4,5,6,8;several N-methylanilino derivatives
Resumo:
Various intrinsic and external factors are constantly attacking the cells causing damage to DNA and to other cellular structures. Cells in turn have evolved with different kinds of mechanisms to protect against the attacks and to repair the damage. Ultraviolet radiation (UVR) is one of the major environmental genotoxic carcinogens that causes inflammation, mutations, immunosuppression, accelerated aging of the skin and skin cancers. Epidermis is the outermost layer of the skin consisting mostly of keratinocytes, whose primary function is to protect the skin against e.g. UV radiation. LIM domain proteins are a group of proteins involved in regulation of cell growth, damage signalling, cell fate determination and signal transduction. Despite their two zinc fingers, LIM domains do not bind to DNA, but rather mediate protein-protein interactions and function as modular protein binding interfaces. We initially identified CSRP1 as UVR-regulated transcript by using expression profiling. Here we have further studied the regulation and function of CRP1, a representative of cysteine rich protein- family consisting of two LIM domains. We find that CRP1 is increased by UVR in primary human keratinocytes and in normal human skin fibroblasts. Ectopic expression of CRP1 protected the cells against UVR and provided a survival advantage, whereas silencing of CRP1 rendered the cells more photosensitive. Actinic keratosis is a premalignant lesion of skin caused by excess exposure to sunlight and sunburn, which may lead to formation of squamous cell carcinoma. The expression of CRP1 was increased in basal keratinocytes of Actinic keratosis patient specimens suggesting that CRP1 may be increased by constant exposure to UVR and may provide survival advantage for the cells also in vivo. In squamous cell carcinoma, CRP1 was only expressed in the fibroblasts surrounding the tumour. Moreover, we found that ectopic expression of CRP1 suppresses cell proliferation. Transforming growth factor beta (TGFbeta) is a multifunctional cytokine that regulates several functions in cell including growth, apoptosis and differentiation, and plays important roles in pathological disorders like cancer and fibrosis. We found that TGFbeta-signalling pathway regulates CRP1 at protein, but not at transcriptional level. The increase was mediated both through Smad and non-Smad signalling pathways involving MAPK/p38. Furthermore, we found that TGFbeta-mediated increase in CRP1 was associated with myofibroblast differentiation, and that CRP1 was significantly more expressed in idiopathic pulmonary fibrosis as compared to normal lung specimens. Since cell contractility is a distinct feature of myofibroblasts, and CRP1 is associated with actin cytoskeleton, we studied the role of CRP1 in cell contractility. CRP1 was found to localize to stress fibres that mediate contractility and to mediate myofibroblast contraction. These studies identify CRP1 as a stress responsive and cytokine regulated cytoskeletal protein that participates in pathological processes involved in fibrotic diseases and cancer.
Resumo:
This paper deals with the application of artificial commutation for a normally rated inverter connecting a weak AC system in a multiterminal HVDC (MTDC) system. Artificial commutation is achieved using series capacitors. A modular digital simulation technique is developed to study the dynamic performance of the system. It is shown that by a proper selection of the value of the capacitor it is possible to limit the valve stresses and the DC harmonics to acceptable levels and achieve an improved performance during severe transient conditions. The determination of the value of the series capacitor is based on a parametric study.