954 resultados para ACTIN CYTOSKELETON
Resumo:
Background: Smooth muscle content is increased within the airway wall in patients with asthma and is likely to play a role in airway hyperresponsiveness. However, smooth muscle cells express several contractile and structural proteins, and each of these proteins may influence airway function distinctly. Objective: We examined the expression of contractile and structural proteins of smooth muscle cells, as well as extracellular matrix proteins, in bronchial biopsies of patients with asthma, and related these to lung function, airway hyperresponsiveness, and responses to deep inspiration. Methods: Thirteen patients with asthma (mild persistent, atopic, nonsmoking) participated in this cross-sectional study. FEV1 % predicted, PC20 methacholine, and resistance of the respiratory system by the forced oscillation technique during tidal breathing and deep breath were measured. Within 1 week, a bronchoscopy was performed to obtain 6 bronchial biopsies that were immunuhistochemically stained for alpha-SM-actin, desmin, myosin light chain kinase (MLCK), myosin, calponin, vimentin, elastin, type III collagen, and fibronectin. The level of expression was determined by automated densitometry. Results: PC20 methacholine was inversely related to the expression of alpha-smooth muscle actin (r = -0.62), desmin (r = -0.56), and elastin (r = -0.78). In addition, FEV1% predicted was positively related and deep inspiration-induced bronchodilation inversely related to desmin (r = -0.60), MLCK (r = -0.60), and calponin (r = -0.54) expression. Conclusion: Airway hyperresponsiveness, FEV1% predicted, and airway responses to deep inspiration are associated with selective expression of airway smooth muscle proteins and components of the extracellular matrix.
Resumo:
This work aimed to investigate some aspects related to the pathogenicity of Lechiguana, a bovine fibroproliferative lesion characterized by rapid collagen accumulation. Light and transmission electron microscopy and in situ hybridization studies were performed in order to elucidate the fibrogenic activity of this lesion. The characterization of fibroblastic plasticity in the lesion was done by immunohistochemical study for alpha-smooth-muscle cell actin. The ovoid-shaped cells presented positive reaction for alpha-smooth-muscle cell actin in their cytoplasm and, at the electron-microscopic level demonstrated basal lamina-like material adjacent to the external surface and collagen fibrils that corresponded to a cell population phenotypically similar to the myofibroblast. We also investigated alpha 1 collagen type I mRNA at different times of evolution of Lechiguana lesions, using isotopic and non-isotopic in situ hybridization. The results strongly suggest the involvement of a myofibroblast-like cell population that expresses mRNA for type I collagen and is probably associated with the increase of collagen deposition.
Resumo:
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to determine whether myofibroblasts or other cells in the stroma in the cornea produce interleukin (IL)-1 alpha or IL-1 beta that could modulate myofibroblast viability in corneas with haze after photorefractive keratectomy (PRK). Twenty-four female rabbits had haze-generating PRK for 9 diopters of myopia and were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were removed, frozen in OCT at -80 degrees C, and analyzed by immunocytochemistry using primary antibodies to IL-1 alpha, IL-1 beta and alpha smooth muscle actin (SMA). Double immunostaining was performed for the co-localization of SMA with IL-1 alpha or IL-1 beta. Central dense haze and peripheral slight haze regions of each cornea were analyzed. SMA+ cells that expressed IL-1 alpha protein were detected in both regions of the corneas at most time points following PRK. However, in the haze region at the 1,3 and 4 week time points, significantly more (p < 0.01) SMA cells did not express IL-1 alpha. Also, in the haze region at all three time points, significantly more (p < 0.01) SMA- cells than SMA+ cells expressed interleukin-1 alpha protein. IL-1 beta expression patterns in SMA+ and SMA- stromal cells was similar to that of IL-1 alpha after PRK. Previous studies have demonstrated that IL-1 alpha or IL-1 beta triggers myofibroblast apoptosis in vitro, depending on the available concentration of apoptosis-suppressive TGFO. This study demonstrates that SMA- cells such as corneal fibroblasts, keratocytes, or inflammatory cells may produce IL-1 alpha and/or IL-1 beta that could act in paracrine fashion to regulate myofibroblast apoptosis-especially in the region where there is haze in the cornea after PRK was performed and SMA+ myofibroblasts are present at higher density. However, some SMA+ myofibroblasts themselves produce IL-1 alpha and/or IL-1 beta, suggesting that myofibroblast viability could also be regulated via autocrine mechanisms. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to determine whether bone marrow-derived cells can differentiate into myofibroblasts, as defined by alpha-smooth muscle actin (SMA) expression, that arise in the corneal stroma after irregular phototherapeutic keratectomy and whose presence within the cornea is associated with corneal stromal haze. C578L/6J-GFP chimeric mice were generated through bone marrow transplantation from donor mice that expressed enhanced green fluorescent protein (GFP) in a high proportion of their bone marrow-derived cells. Twenty-four GFP chimeric mice underwent haze-generating corneal epithelial scrape followed by irregular phototherapeutic keratectomy (PTK) with an excimer laser in one eye. Mice were euthanized at 2 weeks or 4 weeks after PTK and the treated and control contralateral eyes were removed and cryo-preserved for sectioning for immunocytochemistry. Double immunocytochemistry for GFP and myofibroblast marker alpha-smooth muscle actin (SMA) were performed and the number of SMA+GFP+, SMA+GFP, SMA-GFP+ and SMA GFP cells, as well as the number of DAPI+ cell nuclei, per 400x field of stroma was determined in the central, mid-peripheral and peri-limbal cornea. In this mouse model, there were no SMA+ cells and only a few GFP+ cells detected in unwounded control corneas. No SMA+ cells were detected in the stroma at two weeks after irregular PTK, even though there were numerous GFP+ cells present. At 4 weeks after irregular PTK, all corneas developed mild to moderately severe corneal haze. In each of the three regions of the corneas examined, there were on average more than 9x more SMA+GFP+ than SMA+GFP myofibroblasts. This difference was significant (p < 0.01). There were significantly more (p < 0.01) SMA GFP+ cells, which likely include inflammatory cells, than SMA+GFP+ or SMA+GFP cells, although SMA GFP cells represent the largest population of cells in the corneas. In this mouse model, the majority of myofibroblasts developed from bone marrow-derived cells. It is possible that all myofibroblasts in these animals developed from bone marrow-derived cells since mouse chimeras produced using this method had only 60-95% of bone marrow-derived cells that were GFP+ and it is not possible to achieve 100% chimerization. This model, therefore, cannot exclude the possibility of myofibroblasts also developed from keratocytes and/or corneal fibroblasts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields alpha-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at 1 week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields a-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at I week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at I week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while alpha-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27(Kip1) and p16(INKA) remained unchanged, whereas p21(Cip1) was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21(Cip1) is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts.
Resumo:
Juvenile xanthogranuloma (JXG) is a non-Langerhans cell histiocytosis (nonLCH). It is a benign and self-healing disorder that generally affects infants and children. Oral lesions in adult patients are rare, although the microscopic findings are similar to those observed in other locations. A 56-year-old white man presented with a chief complaint of a gingival mass that had appeared 6 months before and had grown slowly. An intraoral examination revealed the presence of a solitary, softened gingival mass affecting the mandibular lingual gingiva at the right central incisor area. A biopsy of the lesion showed multiple large macrophages and numerous giant cells of Touton type. The immunohistochemistry positivity for CD68, fascin, factor XIIIa, alpha-antitrypsin and negativity for S-100, beta-actin, CD1a, and desmin confirmed the diagnosis of JXG. The occurrence of adult oral JXG is extremely rare. It is a nonLCH that may present variable clinical and microscopic aspects, which leads to a diversity of clinical misdiagnoses. A precise diagnosis of these lesions requires an accurate evaluation of clinical, microscopic, and immunohistochemical features.
Resumo:
PURPOSE: To compare mechanical and ethanol epithelial removal with respect to myofibroblast development and haze formation after photorefractive keratectomy (PRK). METHODS: Seventeen rabbits underwent mechanical or ethanol debridement, and the opposite eye of each rabbit served as an unwounded control. In both groups, the epithelium was removed with a spatula and discarded. A -9.00-diopter PRK was performed in each eye. The level of haze in each cornea at 4 weeks was graded at the slit-lamp microscope according to the Fantes scale. Myofibroblast generation was detected with immunocytochemistry for alpha-smooth muscle actin (alpha-SMA) and cells were quantitatively analyzed. RESULTS: No difference was noted between the two groups in alpha-SMA + myofibroblasts 4 weeks after surgery (43.6 +/- 2.0/400X field and 45.7 +/- 4.8/400X field in ethanol and mechanical groups, respectively) (P=.10). A slight difference was noted but did not reach statistical significance with regard to stromal haze between ethanol and mechanical groups (2.0 +/- 0.5 and 2.3 +/- 0.4, respectively, P=.063). The ethanol and mechanical groups were statistically different when compared to controls regarding stromal haze and alpha-SMA+ cells (P <.0001 for all comparisons). CONCLUSIONS:No difference was noted in clinical haze or myofibroblast generation between corneas that had PRK with mechanical,or ethanol epithelial debridement. [J Refract Surg., 2008;24:923-927.]
Resumo:
The aim of the present study was to evaluate the clinicopathological, immunohistochemical, and molecular genetic features of gastrointestinal stromal tumors in Brazil and compare them with cases from other countries. Five hundred and thirteen cases were retrospectively analyzed. HE-stained sections and clinical information were reviewed and the immunohistochemical expression of CD117, CD34, smooth-muscle actin, S-100 protein, desmin, CD44v3 adhesion molecule, p53 protein, epidermal growth factor receptor, and Ki-67 antigen was studied using tissue microarrays. Mutation analysis of KIT and platelet-derived growth factor receptor-alpha genes was also performed. There was a slight female predominance (50.3%) and the median age at diagnosis was 59 years. The tumors were mainly located in the stomach (38.4%). Immunohistochemistry showed that CD117 was expressed in 95.7% of cases. Epidermal growth factor receptor expression was observed in 84.4% of tumors. p53 protein expression was found only in 2.6% of cases but all belonged to the high-risk group for aggressive behavior according to the National Institutes of Health consensus approach. No CD44v3 adhesion molecule expression was detected. KIT exon 11 mutations were the most frequent (62.2%). The present data confirm that gastrointestinal stromal tumors in Brazilian patients do not differ from tumors occurring in other countries.
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.