999 resultados para thermal needle
Resumo:
The effect of annealing on structural defects and d(0) ferromagnetism in SnO2 nanoparticles prepared by solution combustion method is investigated. The as-synthesized SnO2 nanoparticles were annealed at 400-800 degrees C for 2 h, in ambient conditions. The crystallinity, size, and morphology of the samples were studied using x-ray diffraction and transmission electron microscopy studies. The annealing results in grain growth due to coarsening as well as reduction in oxygen vacancies as confirmed by Raman spectroscopy, photoluminescence spectroscopy, and x-ray photoelectron spectroscopy. All the as synthesized and annealed samples exhibit room temperature ferromagnetism (RTFM) with distinct hysteresis loops and the saturation magnetization as high as similar to 0.02 emu/g in as-synthesized samples. However, the saturation magnetization is drastically reduced with increasing annealing temperature. Further the presence of singly charged oxygen vacancies (V-o(-) signal at g-value 1.99) is confirmed by electron paramagnetic resonance studies, which also diminish with increasing annealing temperature. The observed diminishing RTFM and simultaneous evidences of diminishing O vacancies clearly indicate that RTFM is driven by defects in oxide lattice and confirms primary role of oxygen vacancies in inducing ferromagnetic ordering in metal oxide semiconductors. The study also provides improved fundamental understanding regarding the ambiguity in the origin of intrinsic RTFM in semiconducting metal oxides and projects their technological application in the field of spintronics. (C) 2013 AIP Publishing LLC.
Resumo:
A new 3D cadmium(II) coordination polymer, Cd(C2O4)(0.5)Cl(H2O)](n) (1) has been synthesized from a mixture of CdCl2. H2O and (NH4)(2)C2O4 in a slightly acidic pH. Its molecular structure was determined by single crystal X-ray diffraction which reveals that the new polymeric structure consists of simultaneous mu(4)-oxalato, mu-aquo, and mu-chlorido bridges between the metal centers, embedded in distorted pentagonal bipyramidal geometries. On thermal analysis compound exhibits high thermal stability up to 330 degrees C. Compound 1 also exhibits strong fluorescent emission. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
A one-dimensional coupled multi-physics based model has been developed to accurately compute the effects of electrostatic, mechanical, and thermal field interactions on the electronic energy band structure in group III-nitrides thin film heterostructures. Earlier models reported in published literature assumes electro-mechanical field with uniform temperature thus neglecting self-heating. Also, the effects of diffused interface on the energy band structure were not studied. We include these effects in a self-consistent manner wherein the transport equation is introduced along with the electro-mechanical models, and the lattice structural variation as observed in experiments are introduced at the interface. Due to these effects, the electrostatic potential distribution in the heterostructure is altered. The electron and hole ground state energies decrease by 5% and 9%, respectively, at a relative temperature of 700 K, when compared with the results obtained from the previously reported electro-mechanical model assuming constant and uniform temperature distribution. A diffused interface decreases the ground state energy of electrons and holes by about 11% and 9%, respectively, at a relative temperature of 700 K when compared with the predictions based on uniform temperature based electro-mechanical model. (C) 2013 AIP Publishing LLC.
Resumo:
We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.
Resumo:
Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.
Resumo:
In the present work, the thermal efficiency of a conventional domestic burner is studied both experimentally and numerically for liquefied petroleum gas (LPG) and piped natural gas (PNG) fuels. Three-dimensional computational fluid dynamic (CFD) modeling of the steady-state flow, combustion and heat transfer to the vessel is reported for the first time in such burners. Based on the insights from the CFD model concerning the flow and heat transfer, design modifications in the form of a circular insert and a radiant sheet are proposed which are observed to increase thermal efficiency for LPG. For PNG, predictions showed that loading height was a much more important factor affecting efficiency than these design modifications and an optimal loading height could be identified. Experiments confirm these trends by showing an improvement in burner thermal efficiency of 2.5% for LPG with the modified design, and 10% for PNG with the optimal loading height, demonstrating that the CFD modeling approach developed in the present work is a useful tool to study domestic burners. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.
Resumo:
A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with skin (T-sk) and oral temperature (T-core) from the subjects. From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Stepwise regression analysis result showed T-b was better predictor of TSV than T-sk and T-core. Regional skin temperature response, lower sweat threshold temperature with no dipping sweat and higher cutaneous sweating threshold temperature were observed as thermal adaptive responses. Using PMV model, thermal comfort zone was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, whereas using TSV response, wider comfort zone was estimated as (23.25-2632) degrees C with neutral temperature at 24.83 degrees C. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained with an asymmetric distribution of hot-cold thermal sensation response in Indians. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The enzyme SAICAR synthetase ligates aspartate with CAIR (5'-phosphoribosyl-4-carboxy-5-aminoimidazole) forming SAICAR (5-amino-4-imidazole-N-succinocarboxamide ribonucleotide) in the presence of ATP. In continuation with our previous study on the thermostability of this enzyme in hyper-/thermophiles based on the structural aspects, here, we present the dynamic aspects that differentiate the mesophilic (E. coli, E. chaffeensis), thermophilic (G. kaustophilus), and hyperthermophilic (M. jannaschii, P. horikoshii) SAICAR synthetases by carrying out a total of 11 simulations. The five functional dimers from the above organisms were simulated using molecular dynamics for a period of 50 ns each at 300 K, 363 K, and an additional simulation at 333 K for the thermophilic protein. The basic features like root-mean-square deviations, root-mean-square fluctuations, surface accessibility, and radius of gyration revealed the instability of mesophiles at 363 K. Mean square displacements establish the reduced flexibility of hyper-/thermophiles at all temperatures. At the simulations time scale considered here, the long-distance networks are considerably affected in mesophilic structures at 363 K. In mesophiles, a comparatively higher number of short-lived (having less percent existence time) C alpha, hydrogen bonds, hydrophobic interactions are formed, and long-lived (with higher percentage existence time) contacts are lost. The number of time-averaged salt-bridges is at least 2-fold higher in hyperthermophiles at 363 K. The change in surface accessibility of salt-bridges at 363 K from 300 K is nearly doubled in mesophilic protein compared to proteins from other temperature classes.
Resumo:
The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers
Resumo:
In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.
Resumo:
[1] Evaporative fraction (EF) is a measure of the amount of available energy at the earth surface that is partitioned into latent heat flux. The currently operational thermal sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite platforms provide data only at 1000 m, which constraints the spatial resolution of EF estimates. A simple model (disaggregation of evaporative fraction (DEFrac)) based on the observed relationship between EF and the normalized difference vegetation index is proposed to spatially disaggregate EF. The DEFrac model was tested with EF estimated from the triangle method using 113 clear sky data sets from the MODIS sensor aboard Terra and Aqua satellites. Validation was done using the data at four micrometeorological tower sites across varied agro-climatic zones possessing different land cover conditions in India using Bowen ratio energy balance method. The root-mean-square error (RMSE) of EF estimated at 1000 m resolution using the triangle method was 0.09 for all the four sites put together. The RMSE of DEFrac disaggregated EF was 0.09 for 250 m resolution. Two models of input disaggregation were also tried with thermal data sharpened using two thermal sharpening models DisTrad and TsHARP. The RMSE of disaggregated EF was 0.14 for both the input disaggregation models for 250 m resolution. Moreover, spatial analysis of disaggregation was performed using Landsat-7 (Enhanced Thematic Mapper) ETM+ data over four grids in India for contrasted seasons. It was observed that the DEFrac model performed better than the input disaggregation models under cropped conditions while they were marginally similar under non-cropped conditions.
Resumo:
Using isothermal equilibration, phase relations are established in the system Sm-Rh-O at 1273 K. SmRhO3 with GdFeO3-type perovskite structure is found to be the only ternary phase. Solid-state electrochemical cells, containing calcia-stabilized zirconia as an electrolyte, are used to measure the thermodynamic properties of SmRhO3 formed from their binary component oxides Rh2O3 (ortho) and Sm2O3 (C-type and B-type) in two different temperature ranges. Results suggest that C-type Sm2O3 with cubic structure transforms to B-type Sm2O3 with monoclinic structure at 1110 K. The standard Gibbs energy of transformation is . Standard Gibbs energy of formation of SmRhO3 from binary component oxides Rh2O3 and Sm2O3 with B-type rare earth oxide structure can be expressed as . The decomposition temperature of SmRhO3 estimated from the extrapolation of electrochemical data is 1665 (+/- 2) K in air and 1773 (+/- 3) K in pure oxygen. Temperature-composition diagrams at constant oxygen pressures are constructed for the system Sm-Rh-O. Employing the thermodynamic data for SmRhO3 from emf measurement and auxiliary data for other phases from the literature, oxygen potential-composition phase diagram and 3-D chemical potential diagram for the system Sm-Rh-O at 1273 K are developed.