975 resultados para femtosecond optical heterodyne detection of optical Kerr
Resumo:
A reversed-phase high-performance liquid chromatography with series dual glassy carbon electrodes for the amperometric detection of water-soluble menadione is described. The complex post-column derivatization reaction and the high background currents were avoided. The menadione sodium bisulfite was reduced at -0.3 V vs. SCE at the upstream (generator) electrode and oxidized at +0.2V vs. SCE at the downstream (collector) electrode. The mobile phase was 0.2moll(-1) HAc-NaAc aqueous buffer (pH 5.50) and 40% (v/v) methanol. The linear response was in the range of 35 ng to 15 mu g, with a detection Limit of 15 ng (S/N=3). The correlation coefficient was 0.9997 (n=6). The electrochemical detection with series dual electrodes has a higher selectivity for menadione (vitamin K-3) compound than with UV detection.
Resumo:
A palladium particle-modified carbon fiber microdisk array electrode was designed and employed in capillary electrophoresis for the simultaneous detection of hydrazine, methylhydrazine, and isoniazid. The Pd-modified microdisk electrode had high catalytic ability for hydrazines and exhibited good reproducibility and stability. The response for hydrazine was linear over 3 orders of magnitude with a correlation coefficient of 0.993. The detection limits far hydrazine, methylhydrazine, and isoniazid were 1.2, 2.1, and 6.2 pg, respectively.
Resumo:
A chemically modified electrode (CME) constructed by adsorption of aquocobalamin (VB12a) onto a glassy carbon electrode surface was demonstrated to catalyze the electro-oxidation of cysteine, a sulfhydryl-containing compound. The sulfhydryl oxidation occured at 0.54-0.88 V vs. Ag/AgCl depending on pH value (3.0-10.0). The electrocatalytic behavior of cysteine is elucidated with respect to solution pH, operating potential and other variables as well as the CME preparation conditions. When used as the sensing electrode in flow injection amperometric detection, the CME permitted detection of the compound at 0.8 V. The detection limit was 1.7 pmol. The linear response range went up to 1.16 nmol. The stability of the CME was shown by RSD (4.2%) over 10 repeated injections.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
A conducting polypyrrole film immobilized with PMo12O403- anion on a glassy carbon electrode was prepared by an electrochemical method. This kind of chemically modified electrode (CME) was prepared successfully by doping the polypyrrole film electrode wit
Resumo:
Dicyanobis(1,10-phenanthroline)iron(II)-modified glassy carbon electrodes were shown to exhibit an electrocatalytic response for the oxidation of acetaminophen with a decrease of 100 mV in the potential required. It can also inhibit the oxidation of ascor
Resumo:
A novel type of electrochemical detector based on a polyaniline-dispersed mercury-coated glassy carbon chemically modified electrode was investigated for the detection of monochloramine and dichloramine. A polyaniline dispersed-mercury modified electrode, which was prepared by coating polyaniline on a thin mercury film electrode using fast-sweep voltammetry, was developed. The selectivity could be altered using various counter ions incorporated into the polymer. The results indicated that the use of a conducting polymer-based electrochemical sensor for the selective determination of chloramine is a feasible approach.
Resumo:
A multi-cylinder microelectrode coupled with a conventional glassy carbon disc electrode (MCM/GC) was prepared and characterized using cyclic voltammetry and chronoamperometry. It was demonstrated that in the same way as one observed a steady-state current at closely spaced microelectrodes when redox recycling takes place, the same effect can be obtained with the MCM/GC device. The experimental results obtained with K3Fe(CN)6 solutions were compared with a previously developed theory. Further, it was demonstrated that with a carbon fibre MCM/GC device, the voltammetric behaviour of dopamine is greatly improved by virtue of redox recycling, hence giving high sensitivity. The steady-state collection current was linearly related to dopamine concentration in the range 1 X 10(-4) to 5 x 10(-7) Mol l-1, and the detection limit was 2 x 10(-7) mol l-1. The influence of coexisting ascorbic acid was also investigated. This device was applied successfully in the determination of dopamine hydrochloride in pharmaceutical preparations.
Resumo:
A method for the specific determination of cobalt based on reversed-phase liquid chromatography with amperometric detection via on-column complex formation has been developed. A water-soluble chelating agent, 1-(2-pyridylazo)-2-naphthol-6-sulphonic acid (PAN-6S), is added to the mobile phase and aqueous cobalt solutions are injected directly into the column to form in situ the cobalt-PAN-6S chelate, which is then separated from other metal PAN-6S chelates and subjected to reductive amperometric detection at a moderate potential of -0.3 V. Because the procedure eliminates the interference of oxygen and depresses the electrochemical reduction of the mobile phase-containing ligand PAN-6S, by virtue of the quasi:reversible electrode process of the cobalt-PAN-6S complex, a low detection limit of 0.06 ng can be readily obtained. Interference effects were examined for sixteen common metal species, and at a 5- to 8000-fold excess by mass no obvious interference was observed. The feasibility of the method as an approach to the specific analysis of cobalt in a hair sample has been demonstrated.
Resumo:
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l-1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 X 10(-6)-0.1 mol 1-1 with a detection limit of 1.0 X 10(-6) mol l-1. A 1 X 10(-4) mol 1-1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.
Resumo:
A new liquid chromatography electrochemical (LCEC) scheme for glucose sensing has been developed on the basis of a Prussian Blue chemically modified electrode (CME) of novel construction and characterized in terms of various experimental parameters by the flow injection analysis (FIA) technique. Unique hydrodynamic voltammograms were obtained for the first time at the CME in the flow-through amperometric detection of glucose, and subsequently both anodic and cathodic peaks could be expected on monitoring the operating potential in the modest positive or negative region. The unique pH dependence on the CME response towards glucose makes it perfectly compatible with conventional reversed phase liquid chromatography systems. On the basis of these features, practical application in glucose LCEC detection has been effectively performed; a linear response range over three orders of magnitude and a detection limit of subpicomole level were readily obtained. The capability of the established LCEC mode in the direct sensing of urinary glucose has been demonstrated.
Resumo:
A vitamin B-12 chemically modified electrode (CME) was constructed by adsorption of vitamin B-12 onto a glassy carbon surface. The electrode catalyzes the electrooxidation of hydrazine compounds over a wide pH range. The electrocatalytic behavior of hydrazines is elucidated with respect to the CME preparation conditions, solution pH, operating potential, mobile phase flow rate, and other variables. When applied to liquid chromatographic detection of the analytes, the vitamin B-12 CME yielded a linear response range over 2 orders of magnitude, and detection limits at the picomole level. The vitamin B-12 CME offers acceptable catalytic stability in both batch and flow systems.
Resumo:
A copper-based chemically modified electrode (CME) has been constructed and characterized for flow-through amperometric detection of catechol, resorcinol, and hydroquinone. Novel potential dependence of the detector response was first obtained for these analytes at the Cu CME, where negative peaks together with positive ones were observed in one definite chromatogram using amperometric detection. Its advantages in chromatographic applications were demonstrated. From these observations it is proposed that the detector response was governed by formation of copper complexes with the solutes. A dynamic linear range over two orders of magnitude was obtained, when operating the detector at +0.10 V vs. SCE, from which ng detection limits were achieved.
Resumo:
A novel Prussian blue chemically modified electrode (CME) was constructed and characterized for liquid chromatography electrochemical detection (LCEC) of catecholamines. Both anodic and cathodic peaks could be obtained by monitoring at constant applied potential at anodic and slightly cathodic potential ranges (0.3-0.7 and -0.2-0.1 V vs. SCE), respectively. When arranged in a series configuration, using the modified electrodes as generating and collecting detectors, extremely high effective collection efficiencies of 0.91 (for norepinephrine) and 0.58 (for dihydroxyphenylacetic acid) were achieved in dual-electrode LCEC for catecholamines; and a linear response range over 3 orders of magnitude and a detection limit of 10 pg were obtained with a downstream CME as the indicating detector.
Resumo:
A Prussian Blue-modified glassy carbon electrode prepared by simple adsorption exhibited excellent electrocatalytic activity in the oxidation of hydrazine in acidic media. A film of the perfluorosulphonic acid polymer Nafion coated on top of the Prussian Blue-modified glassy carbon electrode can improve the mechanical stability of the Prussian Blue layer in the flow stream. Hydrazine was detected by flow-injection analysis at the modified electrode with high sensitivity. The limit of detection was 0.6 ng.