993 resultados para antimicrobial methods
Resumo:
PhD thesis in Bioengineering
Resumo:
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Resumo:
Endopleura uchi (Huber) Cuatrec. is an Amazon species traditionally used as treatment for inflammations and female disorders. Bergenin was isolated from ethyl acetate fraction of bark of E. uchi by using column chromatography over sephadex LH-20 and then silica gel 60 flash. Its structure was identified on the basis of its NMR spectra. The antimicrobial activity of bergenin and fractions of methanol extract of E. uchi were evaluated against ATCC microorganisms (Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans, C. guilliermondii, Aspergillus flavus, A. nidulans). Clinically isolated strains of all of these microorganisms, along with C. tropicalis, A. niger, Shigella sonnei, Serratia marcenses and Klebsiella pneumoniae were also evaluated. The growth inhibition caused by bergenin, extracts and fractions of E. uchi against ATCC microorganisms were similar to the inhibition to microorganisms clinically isolated. The ethyl acetate fraction and the isolate bergenin inhibit the growth of the yeasts C. albicans, C. tropicalis, and C. guilliermondii, but present lower activity against filamentous fungi Aspergillus flavus, A. nidulans, A. niger, and did not inhibit the Gram positive and Gram negative bacteria. The activity of the ethyl acetate fraction and bergenin are in agreement wit its high concentration found in bark extract of E. uchi. Moreover, the selective activity against three Candida species helps to understand its traditional use against infections that affect women.
Resumo:
Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, in cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule, a fortiori when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality, this approach has been frequently used, by project managers in an ad-hoc way.
Resumo:
Extreme value theory (EVT) deals with the occurrence of extreme phenomena. The tail index is a very important parameter appearing in the estimation of the probability of rare events. Under a semiparametric framework, inference requires the choice of a number k of upper order statistics to be considered. This is the crux of the matter and there is no definite formula to do it, since a small k leads to high variance and large values of k tend to increase the bias. Several methodologies have emerged in literature, specially concerning the most popular Hill estimator (Hill, 1975). In this work we compare through simulation well-known procedures presented in Drees and Kaufmann (1998), Matthys and Beirlant (2000), Beirlant et al. (2002) and de Sousa and Michailidis (2004), with a heuristic scheme considered in Frahm et al. (2005) within the estimation of a different tail measure but with a similar context. We will see that the new method may be an interesting alternative.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Promoting environmental and health education is crucial to allow students to make conscious decisions based on scientific criteria. The study is based on the outcomes of an Educational Project implemented with Portuguese students and consisted of several activities, exploring pre-existent Scientific Gardens at the School, aiming to investigate the antibacterial, antitumor and anti-inflammatory properties of plant extracts, with posterior incorporation in soaps and creams. A logo and a webpage were also created. The effectiveness of the project was assessed via the application of a questionnaire (pre- and post-test) and observations of the participants in terms of engagement and interaction with all individuals involved in the project. This project increased the knowledge about autochthonous plants and the potential medical properties of the corresponding plant extracts and increased the awareness about the correct design of scientific experiments and the importance of the use of experimental models of disease. The students regarded their experiences as exciting and valuable and believed that the project helped to improve their understanding and increase their interest in these subjects and in science in general. This study emphasizes the importance of raising students’ awareness on the valorization of autochthonous plants and exploitation of their medicinal properties.
Resumo:
Honeys are described possessing different properties including antimicrobial. Many studies have presented this activity of honeys produced by Apis mellifera bees, however studies including activities of stingless bees honeys are scarce. The aim of this study was to compare the antimicrobial activity of honeys collected in the Amazonas State from Melipona compressipes, Melipona seminigra and Apis mellifera against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Chromobacterium violaceum, and Candida albicans. Minimum inhibitory concentrations were determined using the agar dilution method with Müller-Hinton agar (for bacteria) or Saboraud agar (for yeast). Staphylococcus aureus and E. faecalis were inhibited by all honeys at concentrations below 12%, while E. coli and C. violaceum were inhibited by stingless bee honeys at concentrations between 10 and 20%. A. mellifera honey inhibited E. coli at a concentration of 7% and Candida violaceum at 0.7%. C. albicans were inhibited only with honey concentrations between 30 and 40%. All examined honey had antimicrobial activity against the tested pathogens, thus serving as potential antimicrobial agents for several therapeutic approaches.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clinica)
Resumo:
In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi was observed. The antimicrobial activity of CM4-A200 was dependent on the physical contact of cells with the film surface. Furthermore, CM4-A200 films did not reveal a cytotoxic effect against both normal human skin fibroblasts and human keratinocytes. Finally, we have developed an optimized ex vivo assay with pig skin demonstrating the antimicrobial properties of the CM4-A200 cast films for skin applications.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.
Resumo:
A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.
Resumo:
Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Ag-O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology were pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.