862 resultados para Supervised classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluent health information flow is critical for clinical decision-making. However, a considerable part of this information is free-form text and inabilities to utilize it create risks to patient safety and cost-­effective hospital administration. Methods for automated processing of clinical text are emerging. The aim in this doctoral dissertation is to study machine learning and clinical text in order to support health information flow.First, by analyzing the content of authentic patient records, the aim is to specify clinical needs in order to guide the development of machine learning applications.The contributions are a model of the ideal information flow,a model of the problems and challenges in reality, and a road map for the technology development. Second, by developing applications for practical cases,the aim is to concretize ways to support health information flow. Altogether five machine learning applications for three practical cases are described: The first two applications are binary classification and regression related to the practical case of topic labeling and relevance ranking.The third and fourth application are supervised and unsupervised multi-class classification for the practical case of topic segmentation and labeling.These four applications are tested with Finnish intensive care patient records.The fifth application is multi-label classification for the practical task of diagnosis coding. It is tested with English radiology reports.The performance of all these applications is promising. Third, the aim is to study how the quality of machine learning applications can be reliably evaluated.The associations between performance evaluation measures and methods are addressed,and a new hold-out method is introduced.This method contributes not only to processing time but also to the evaluation diversity and quality. The main conclusion is that developing machine learning applications for text requires interdisciplinary, international collaboration. Practical cases are very different, and hence the development must begin from genuine user needs and domain expertise. The technological expertise must cover linguistics,machine learning, and information systems. Finally, the methods must be evaluated both statistically and through authentic user-feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve single-pustule isolates of Uromyces appendiculatus, the etiological agent of common bean rust, were collected in the state of Minas Gerais, Brazil, and classified according to the new international differential series and the binary nomenclature system proposed during the 3rd Bean Rust Workshop. These isolates have been used to select rust-resistant genotypes in a bean breeding program conducted by our group. The twelve isolates were classified into seven different physiological races: 21-3, 29-3, 53-3, 53-19, 61-3, 63-3 and 63-19. Races 61-3 and 63-3 were the most frequent in the area. They were represented by five and two isolates, respectively. The other races were represented by just one isolate. This is the first time the new international classification procedure has been used for U. appendiculatus physiological races in Brazil. The general adoption of this system will facilitate information exchange, allowing the cooperative use of the results obtained by different research groups throughout the world. The differential cultivars Mexico 309, Mexico 235 and PI 181996 showed resistance to all of the isolates that were characterized. It is suggested that these cultivars should be preferentially used as sources for resistance to rust in breeding programs targeting development lines adapted to the state of Minas Gerais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software testing is one of the essential parts in software engineering process. The objective of the study was to describe software testing tools and the corresponding use. The thesis contains examples of software testing tools usage. The study was conducted as a literature study, with focus on current software testing practices and quality assurance standards. In the paper a tool classifier was employed, and testing tools presented in study were classified according to it. We found that it is difficult to distinguish current available tools by certain testing activities as many of them contain functionality that exceeds scopes of a single testing type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to view credit risk from the financier’s point of view in a theoretical framework. Results and aspects of the previous studies regarding measuring credit risk with accounting based scoring models are also examined. The theoretical framework and previous studies are then used to support the empirical analysis which aims to develop a credit risk measure for a bank’s internal use or a risk management tool for a company to indicate its credit risk to the financier. The study covers a sample of Finnish companies from 12 different industries and four different company categories and employs their accounting information from 2004 to 2008. The empirical analysis consists of six stage methodology process which uses measures of profitability, liquidity, capital structure and cash flow to determine financier’s credit risk, define five significant risk classes and produce risk classification model. The study is confidential until 15.10.2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes is a rapidly increasing worldwide problem which is characterised by defective metabolism of glucose that causes long-term dysfunction and failure of various organs. The most common complication of diabetes is diabetic retinopathy (DR), which is one of the primary causes of blindness and visual impairment in adults. The rapid increase of diabetes pushes the limits of the current DR screening capabilities for which the digital imaging of the eye fundus (retinal imaging), and automatic or semi-automatic image analysis algorithms provide a potential solution. In this work, the use of colour in the detection of diabetic retinopathy is statistically studied using a supervised algorithm based on one-class classification and Gaussian mixture model estimation. The presented algorithm distinguishes a certain diabetic lesion type from all other possible objects in eye fundus images by only estimating the probability density function of that certain lesion type. For the training and ground truth estimation, the algorithm combines manual annotations of several experts for which the best practices were experimentally selected. By assessing the algorithm’s performance while conducting experiments with the colour space selection, both illuminance and colour correction, and background class information, the use of colour in the detection of diabetic retinopathy was quantitatively evaluated. Another contribution of this work is the benchmarking framework for eye fundus image analysis algorithms needed for the development of the automatic DR detection algorithms. The benchmarking framework provides guidelines on how to construct a benchmarking database that comprises true patient images, ground truth, and an evaluation protocol. The evaluation is based on the standard receiver operating characteristics analysis and it follows the medical practice in the decision making providing protocols for image- and pixel-based evaluations. During the work, two public medical image databases with ground truth were published: DIARETDB0 and DIARETDB1. The framework, DR databases and the final algorithm, are made public in the web to set the baseline results for automatic detection of diabetic retinopathy. Although deviating from the general context of the thesis, a simple and effective optic disc localisation method is presented. The optic disc localisation is discussed, since normal eye fundus structures are fundamental in the characterisation of DR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Female sexual dysfunctions, including desire, arousal, orgasm and pain problems, have been shown to be highly prevalent among women around the world. The etiology of these dysfunctions is unclear but associations with health, age, psychological problems, and relationship factors have been identified. Genetic effects explain individual variation in orgasm function to some extent but until now quantitative behavior genetic analyses have not been applied to other sexual functions. In addition, behavior genetics can be applied to exploring the cause of any observed comorbidity between the dysfunctions. Discovering more about the etiology of the dysfunctions may further improve the classification systems which are currently under intense debate. The aims of the present thesis were to evaluate the psychometric properties of a Finnish-language version of a commonly used questionnaire for measuring female sexual function, the Female Sexual Function Index (FSFI), in order to investigate prevalence, comorbidity, and classification, and to explore the balance of genetic and environmental factors in the etiology as well as the associations of a number of biopsychosocial factors with female sexual functions. Female sexual functions were studied through survey methods in a population based sample of Finnish twins and their female siblings. There were two waves of data collection. The first data collection targeted 5,000 female twins aged 33–43 years and the second 7,680 female twins aged 18–33 and their over 18–year-old female siblings (n = 3,983). There was no overlap between the data collections. The combined overall response rate for both data collections was 53% (n = 8,868), with a better response rate in the second (57%) compared to the first (45%). In order to measure female sexual function, the FSFI was used. It includes 19 items which measure female sexual function during the previous four weeks in six subdomains; desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain. In line with earlier research in clinical populations, a six factor solution of the Finnish-language version of the FSFI received supported. The internal consistencies of the scales were good to excellent. Some questions about how to avoid overestimating the prevalence of extreme dysfunctions due to women being allocated the score of zero if they had had no sexual activity during the preceding four weeks were raised. The prevalence of female sexual dysfunctions per se ranged from 11% for lubrication dysfunction to 55% for desire dysfunction. The prevalence rates for sexual dysfunction with concomitant sexual distress, in other words, sexual disorders were notably lower ranging from 7% for lubrication disorder to 23% for desire disorder. The comorbidity between the dysfunctions was substantial most notably between arousal and lubrication dysfunction even if these two dysfunctions showed distinct patterns of associations with the other dysfunctions. Genetic influences on individual variation in the six subdomains of FSFI were modest but significant ranging from 3–11% for additive genetic effects and 5–18% for nonadditive genetic effects. The rest of the variation in sexual functions was explained by nonshared environmental influences. A correlated factor model, including additive and nonadditive genetic effects and nonshared environmental effects had the best fit. All in all, every correlation between the genetic factors was significant except between lubrication and pain. All correlations between the nonshared environment factors were significant showing that there is a substantial overlap in genetic and nonshared environmental influences between the dysfunctions. In general, psychological problems, poor satisfaction with the relationship, sexual distress, and poor partner compatibility were associated with more sexual dysfunctions. Age was confounded with relationship length but had over and above relationship length a negative effect on desire and sexual satisfaction and a positive effect on orgasm and pain functions. Alcohol consumption in general was associated with better desire, arousal, lubrication, and orgasm function. Women pregnant with their first child had fewer pain problems than nulliparous nonpregnant women. Multiparous pregnant women had more orgasm problems compared to multiparous nonpregnant women. Having children was associated with less orgasm and pain problems. The conclusions were that desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain are separate entities that have distinct associations with a number of different biopsychosocial factors. However, there is also considerable comorbidity between the dysfunctions which are explained by overlap in additive genetic, nonadditive genetic and nonshared environmental influences. Sexual dysfunctions are highly prevalent and are not always associated with sexual distress and this relationship might be moderated by a good relationship and compatibility with partner. Regarding classification, the results supports separate diagnoses for subjective arousal and genital arousal as well as the inclusion of pain under sexual dysfunctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR) of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams") of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Geographic Information System (GIS) is an indispensable software tool in forest planning. In forestry transportation, GIS can manage the data on the road network and solve some problems in transportation, such as route planning. Therefore, the aim of this study was to determine the pattern of the road network and define transport routes using GIS technology. The present research was conducted in a forestry company in the state of Minas Gerais, Brazil. The criteria used to classify the pattern of forest roads were horizontal and vertical geometry, and pavement type. In order to determine transport routes, a data Analysis Model Network was created in ArcGIS using an Extension Network Analyst, allowing finding a route shorter in distance and faster. The results showed a predominance of horizontal geometry classes average (3) and bad (4), indicating presence of winding roads. In the case of vertical geometry criterion, the class of highly mountainous relief (4) possessed the greatest extent of roads. Regarding the type of pavement, the occurrence of secondary coating was higher (75%), followed by primary coating (20%) and asphalt pavement (5%). The best route was the one that allowed the transport vehicle travel in a higher specific speed as a function of road pattern found in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for low subjectivity area estimates has increased the use of remote sensing for agricultural monitoring and crop yield prediction, leading to more flexibility in data acquisition and lower costs comparing to traditional methods such as census and surveys. Low spatial resolution satellite images with higher frequency in image acquisition have shown to be adequate for cropland mapping and monitoring in large areas. The main goal of this study was to map the Summer crops in the State of Paraná, Brazil, using 10-day composition of NDVI SPOT Vegetation data for 2005/2006, 2006/2007 and 2007/2008 cropping seasons. For this, a supervised digital classification method with Parallelepiped algorithm in multitemporal RGB image composites was used, in order to generate masks of Summer cultures for each 10-day composition. Accuracy assessment was performed using Kappa index, overall accuracy and Willmott's concordance index, resulting in good levels of accuracy. This methodology allowed the accomplishment, with free and low resolution data, of the mapping of Summer cultures at State level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soybean is important to the economy of Brazil, so the estimation of the planted area and the production with higher antecedence and reliability becomes essential. Techniques related to Remote Sensing may help to obtain this information at lower cost and less subjectivity in relation to traditional surveys. The aim of this study is to estimate the planted area with soybean culture in the crop of 2008/2009 in cities in the west of the state of Paraná, in Brazil, based on the spectral dynamics of the culture and through the use of the specific system of analysis for images of Landsat 5/TM satellite. The obtained results were satisfactory, because the classification supervised by Maximum Verisimilitude - MaxVer along with the techniques of the specific system of analysis for satellite images has allowed an estimate of soybean planted area (soybean mask), obtaining values ​​of the metrics of Global Accuracy with an average of 79.05% and Kappa Index over 63.50% in all cities. The monitoring of a reference area was of great importance for determining the vegetative phase in which the culture is more different from the other targets, facilitating the choice of training samples (ROIs) and avoiding misclassifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: to evaluate Crohn's disease recurrence and its possible predictors in patients undergoing surgical treatment. METHODS: We conducted a retrospective study with Crohn's disease (CD) patients undergoing surgical treatment between January 1992 and January 2012, and regularly monitored at the Bowel Clinic of the Hospital das Clínicas of the UFMG. RESULTS: we evaluated 125 patients, 50.4% female, with a mean age of 46.12 years, the majority (63.2%) diagnosed between 17 and 40 years of age. The ileum was involved in 58.4%, whereas stenotic behavior was observed in 44.8%, and penetrating, in 45.6%. We observed perianal disease in 26.4% of cases. The follow-up average was 152.40 months. Surgical relapse occurred in 29.6%, with a median time of 68 months from the first operation. CONCLUSION: The ileocolic location, penetrating behavior and perianal involvement (L3B3p) were associated with increased risk of surgical recurrence.