966 resultados para Stochastic ordinary differential equations
Resumo:
A biomassa é uma das fontes de energia renovável com maior potencial em Portugal, sendo a capacidade de produção de pellets de biomassa atualmente instalada superior a 1 milhão de toneladas/ano. Contudo, a maioria desta produção destina-se à exportação ou à utilização em centrais térmicas a biomassa, cujo crescimento tem sido significativo nos últimos anos, prevendo-se que a capacidade instalada em 2020 seja de aproximadamente 250 MW. O mercado português de caldeiras a pellets é bastante diversificado. O estudo que realizamos permitiu concluir que cerca de 90% das caldeiras existentes no mercado português têm potências inferiores a 60 kW, possuindo na sua maioria grelha fixa (81%), com sistema de ignição eléctrica (92%) e alimentação superior do biocombustível sólido (94%). O objetivo do presente trabalho foi o desenvolvimento de um modelo para simulação de uma caldeira a pellets de biomassa, que para além de permitir otimizar o projeto e operação deste tipo de equipamento, permitisse avaliar as inovações tecnológicas nesta área. Para tal recorreu-se o BiomassGasificationFoam, um código recentemente publicado, e escrito para utilização com o OpenFOAM, uma ferramenta computacional de acesso livre, que permite a simulação dos processos de pirólise, gasificação e combustão de biomassa. Este código, que foi inicialmente desenvolvido para descrever o processo de gasificação na análise termogravimétrica de biomassa, foi por nós adaptado para considerar as reações de combustão em fase gasosa dos gases libertados durante a pirólise da biomassa (recorrendo para tal ao solver reactingFoam), e ter a possibilidade de realizar a ignição da biomassa, o que foi conseguido através de uma adaptação do código de ignição do XiFoam. O esquema de ignição da biomassa não se revelou adequado, pois verificou-se que a combustão parava sempre que a ignição era inativada, independentemente do tempo que ela estivesse ativa. Como alternativa, usaram-se outros dois esquemas para a combustão da biomassa: uma corrente de ar quente, e uma resistência de aquecimento. Ambos os esquemas funcionaram, mas nunca foi possível fazer com que a combustão fosse autossustentável. A análise dos resultados obtidos permitiu concluir que a extensão das reações de pirólise e de gasificação, que são ambas endotérmicas, é muito pequena, pelo que a quantidade de gases libertados é igualmente muito pequena, não sendo suficiente para libertar a energia necessária à combustão completa da biomassa de uma maneira sustentável. Para tentar ultrapassar esta dificuldade foram testadas várias alternativas, , que incluíram o uso de diferentes composições de biomassa, diferentes cinéticas, calores de reação, parâmetros de transferência de calor, velocidades do ar de alimentação, esquemas de resolução numérica do sistema de equações diferenciais, e diferentes parâmetros dos esquemas de resolução utilizados. Todas estas tentativas se revelaram infrutíferas. Este estudo permitiu concluir que o solver BiomassGasificationFoam, que foi desenvolvido para descrever o processo de gasificação de biomassa em meio inerte, e em que a biomassa é aquecida através de calor fornecido pelas paredes do reator, aparentemente não é adequado à descrição do processo de combustão da biomassa, em que a combustão deve ser autossustentável, e em que as reações de combustão em fase gasosa são importantes. Assim, é necessário um estudo mais aprofundado que permita adaptar este código à simulação do processo de combustão de sólidos porosos em leito fixo.
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.
Resumo:
Discussions under this title were held during a special session in frames of the International Conference “Fractional Differentiation and Applications” (ICFDA ’14) held in Catania (Italy), 23-25 June 2014, see details at http://www.icfda14.dieei.unict.it/. Along with the presentations made during this session, we include here some contributions by the participants sent afterwards and also by few colleagues planning but failed to attend. The intention of this special session was to continue the useful traditions from the first conferences on the Fractional Calculus (FC) topics, to pose open problems, challenging hypotheses and questions “where to go”, to discuss them and try to find ways to resolve.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
A new method for the study and optimization of manu«ipulator trajectories is developed. The novel feature resides on the modeling formulation. Standard system desciptions are based on a set of differential equations which, in general, require laborious computations and may be difficult to analyze. Moreover, the derived algorithms are suited to "deterministic" tasks, such as those appearing in a repetitivework, and are not well adapted to a "random" operation that occurs in intelligent systems interacting with a non-structured and changing environment. These facts motivate the development of alternative models based on distinct concepts. The proposed embedding of statistics and Fourier trasnform gives a new perspective towards the calculation and optimization of the robot trajectories in manipulating tasks.
Resumo:
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.
Resumo:
There is a family of models with Physical, Human capital and R&D for which convergence properties have been discussed (Arnold, 2000a; Gómez, 2005). However, spillovers in R&D have been ignored in this context. We introduce spillovers in this model and derive its steady-state and stability properties. This new feature implies that the model is characterized by a system of four differential equations. A unique Balanced Growth Path along with a two dimensional stable manifold are obtained under simple and reasonable conditions. Transition is oscillatory toward the steady-state for plausible values of parameters.
Resumo:
The convergence features of an Endogenous Growth model with Physical capital, Human Capital and R&D have been studied. We add an erosion effect (supported by empirical evidence) to this model, and fully characterize its convergence properties. The dynamics is described by a fourth-order system of differential equations. We show that the model converges along a one-dimensional stable manifold and that its equilibrium is saddle-path stable. We also argue that one of the implications of considering this “erosion effect” is the increase in the adherence of the model to data.
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Matemática).
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Matemática).
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Elliptic differential equations, finite element method, mortar element method, streamline diffusion FEM, upwind method, numerical method, error estimate, interpolation operator, grid generation, adaptive refinement
Resumo:
We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.