Hausdorff dimension bounds for smoothness of holonomies for codimension 1 hyperbolic dynamics


Autoria(s): Pinto, Alberto A.; Rand, David A.; Ferreira, Flávio
Data(s)

08/10/2015

08/10/2015

2007

Resumo

We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.

Identificador

10.1016/j.jde.2007.02.013

Pinto, A. A., Rand, D. A., & Ferreira, E. (2007). Hausdorff dimension bounds for smoothness of holonomies for codimension 1 hyperbolic dynamics. Journal of Differential Equations, 243(2), 168–178. DOI: 10.1016/j.jde.2007.02.013

http://hdl.handle.net/10400.22/6654

10.1016/j.jde.2007.02.013

0022-0396

Idioma(s)

eng

Publicador

Academic Press Inc. Elsevier Science

Direitos

openAccess

http://creativecommons.org/licenses/by-nc-nd/4.0/

Tipo

article