941 resultados para Spatially Offset Raman Spectrometer
Resumo:
Within our study of the plausibility of a subglacial lake under the Amundsenisen Icefield in Southern Spitzbergen, Svalbard achipelago (Glowacki et al., 2007), here we focus on the sensitivity of the system to the thermal effect of the firn and snow layers. Rough heat balance analysis shows that the firn layer plays an important role by driving the heat release to the atmosphere, so that its influence on the ice-water phase transition cannot be neglected (Bucchignani et al., 2012).
Resumo:
The control of the SiGe NW composition is fundamental for the fabrication of high quality heterostructures. Raman spectroscopy has been used to analyse the composition of SiGe alloys. We present a study of the Raman spectrum of SiGe nanowires and SiGe/Si heterostructures. The inhomogeneity of the Ge composition deduced from the Raman spectrum is explained by the existence of a Ge-rich outer shell and by the interaction of the NW with the electromagnetic field associated with the laser beam.
Resumo:
Raman scattering of Si nanowires (NWs) presents antenna effects. The electromagnetic resonance depends on the electromagnetic coupling of the system laser/NW/substrate. The antenna effect of the Raman signal was measured in individual NWs deposited on different substrates, and also free standing NWs in air. The one phonon Raman band in NWs can reach high intensities depending on the system configuration; values of Raman intensity per unit volume more than a few hundred times with respect to bulk substrate can be obtainedRaman scattering of Si nanowires (NWs) presents antenna effects. The electromagnetic resonance depends on the electromagnetic coupling of the system laser/NW/substrate. The antenna effect of the Raman signal was measured in individual NWs deposited on different substrates, and also free standing NWs in air. The one phonon Raman band in NWs can reach high intensities depending on the system configuration; values of Raman intensity per unit volume more than a few hundred times with respect to bulk substrate can be obtained
Resumo:
Contact Spatially Resolved Spectroscopy (SRS) measurements by means of a fiber-optics probe were employed for nondestructive assessment and monitoring of Braeburn apples during shelflife storage. SRS measurements and estimation of optical properties were calibrated and validated by means of liquid optical phantoms with known optical properties and a metamodeling method. The acquired optical properties (absorption and reduced scattering coefficients) for the apples during shelf-life storage were found to provide useful information for nondestructive evaluation of apple quality attributes (firmness and SSC) and for monitoring the changes in their microstructure and chemical composition. On-line SRS measurement was achieved by mounting the SRS probe over a conveyor system
Resumo:
Las propiedades de los materiales cerámicos son una combinación entre las propiedades intrínsecas, definidas por los granos cristalinos, y las propiedades extrínsecas, como son bordes de grano y fases secundarias. La relación entre estos dos elementos produce en muchas ocasiones, la presencia de propiedades inusuales que son la base de muchos materiales electrocerámicos. Sirvan como ejemplo algunos materiales tipo como son: varistores cerámicos, termistores, materiales con coeficiente de resistividad positivo, sensores de borde de grano, etc. En un material electrocerámico con respuesta funcional la correlación entre estructura-microestructura -propiedades es una constante, tanto en la etapa de diseño en laboratorio como en la etapa de producción industrial. El empleo de Microscopía Raman Confocal (MRC) se propone como una metodología relevante para el estudio de los factores que afectan a dichas correlaciones en materiales electrocerámicos. La técnica de MRC constituye una potente herramienta que permite determinar no solo la estructura sino las interacciones entre los elementos microestructurales. La correlación entre estas variables con las propiedades funcionales y la posibilidad de determinar las mismas en condiciones de operación, abren unas posibilidades que hasta la fecha solo estaban en la imaginación de los científicos. En esta presentación se resumen brevemente algunos de los principios relacionados con la técnica de Microscopía Raman Confocal, que junto con ejemplos seleccionados permiten visualizar aspectos relacionados con: la orientación de cristales, identificación fases cristalinas; resolución de nanoestructuras e interfases; determinación y dinámica de dominios ferroeléctricos; presencia de tensiones mecánicas; fenómenos de conducción,... sobre diferentes materiales cerámicos. Los trabajos mostrados son ejemplos de alta resolución en 3D de materiales funcionales como son los materiales electrocerámicos.
Resumo:
This article presents a new and computationally efficient method of analysis of a railway track modelled as a continuous beam of 2N spans supported by elastic vertical springs. The main feature of this method is its important reduction in computational effort with respect to standard matrix methods of structural analysis. In this article, the whole structure is considered to be a repetition of a single one. The analysis presented is applied to a simple railway track model, i.e. to a repetitive beam supported on vertical springs (sleepers). The proposed method of analysis is based on the general theory of spatially periodic structures. The main feature of this theory is the possibility to apply Discrete Fourier Transform (DFT) in order to reduce a large system of q(2N + 1) linear stiffness equilibrium equations to a set of 2N + 1 uncoupled systems of q equations each. In this way, a dramatic reduction of the computational effort of solving the large system of equations is achieved. This fact is particularly important in the analysis of railway track structures, in which N is a very large number (around several thousands), and q = 2, the vertical displacement and rotation, is very small. The proposed method allows us to easily obtain the exact solution given by Samartín [1], i.e. the continuous beam railway track response. The comparison between the proposed method and other methods of analysis of railway tracks, such as Lorente de Nó and Zimmermann-Timoshenko, clearly shows the accuracy of the obtained results for the proposed method, even for low values of N. In addition, identical results between the proposed and the Lorente methods have been found, although the proposed method seems to be of simpler application and computationally more efficient than the Lorente one. Small but significative differences occur between these two methods and the one developed by Zimmermann-Timoshenko. This article also presents a detailed sensitivity analysis of the vertical displacement of the sleepers. Although standard matrix methods of structural analysis can handle this railway model, one of the objectives of this article is to show the efficiency of DFT method with respect to standard matrix structural analysis. A comparative analysis between standard matrix structural analysis and the proposed method (DFT), in terms of computational time, input, output and also software programming, will be carried out. Finally, a URL link to a MatLab computer program list, based on the proposed method, is given
Resumo:
A novel GPU-based nonparametric moving object detection strategy for computer vision tools requiring real-time processing is proposed. An alternative and efficient Bayesian classifier to combine nonparametric background and foreground models allows increasing correct detections while avoiding false detections. Additionally, an efficient region of interest analysis significantly reduces the computational cost of the detections.
Resumo:
This paper is framed within the problem of analyzing the rationality of the components of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane curve and, in the affirmative case, the actual computation of parametrizations. We recall some of the basic definitions and main properties on offsets (see [13]), and conchoids (see [15]) as well as the algorithms for parametrizing their rational components (see [1] and [16], respectively). Moreover, we implement the basic ideas creating two packages in the computer algebra system Maple to analyze the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition, we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained, their rationality analyzed, and parametrizations are provided using the created packages.
Resumo:
Mapping aboveground carbon density in tropical forests can support CO2 emissionmonitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques should be intensified in order to advance tropical forest carbon mapping. Here we present results from the application of a general ACD estimation model applied with small-footprint LiDAR data and field-based estimates of a 50-ha forest plot in Ecuador?s Yasuní National Park. Subplots used for calibration and validation of the general LiDAR equation were selected based on analysis of topographic position and spatial distribution of aboveground carbon stocks. The results showed that stratification of plot locations based on topography can improve the calibration and application of ACD estimation using airborne LiDAR (R2 = 0.94, RMSE = 5.81 Mg?C? ha?1, BIAS = 0.59). These results strongly suggest that a general LiDAR-based approach can be used for mapping aboveground carbon stocks in western lowland Amazonian forests.
Resumo:
Limitations on the open-circuit voltage of p-ZnTe/n-ZnSe heterojunction solar cells are studied via current-voltage (I-V) measurements under solar concentration and at variable temperature. The open-circuit voltage reaches a maximum value of 1.95 V at 77 K and 199 suns. The open-circuit voltage shows good agreement with the calculated built-in potential of 2.00 V at 77 K. These results suggest that the open-circuit voltage is limited by heterojunction band offsets associated with the type-II heterojunction band lineup, rather than the bandgap energy of the ZnTe absorber material.
Resumo:
Hydration forces are thought to result from the energetic cost of water rearrangement near macromolecular surfaces. Raman spectra, collected on the same collagen samples on which these forces were measured, reveal a continuous change in water hydrogen-bonding structure as a function of separation between collagen triple helices. The varying spectral parameters track the force-distance curve. The energetic cost of water “restructuring,” estimated from the spectra, is consistent with the measured energy of intermolecular interaction. These correlations support the idea that the change in water structure underlies the exponentially varying forces seen in this system at least over the 13–18-Å range of interaxial separations.
Resumo:
Propagation of discharges in cortical and thalamic systems, which is used as a probe for examining network circuitry, is studied by constructing a one-dimensional model of integrate-and-fire neurons that are coupled by excitatory synapses with delay. Each neuron fires only one spike. The velocity and stability of propagating continuous pulses are calculated analytically. Above a certain critical value of the constant delay, these pulses lose stability. Instead, lurching pulses propagate with discontinuous and periodic spatio-temporal characteristics. The parameter regime for which lurching occurs is strongly affected by the footprint (connectivity) shape; bistability may occur with a square footprint shape but not with an exponential footprint shape. For strong synaptic coupling, the velocity of both continuous and lurching pulses increases logarithmically with the synaptic coupling strength gsyn for an exponential footprint shape, and it is bounded for a step footprint shape. We conclude that the differences in velocity and shape between the front of thalamic spindle waves in vitro and cortical paroxysmal discharges stem from their different effective delay; in thalamic networks, large effective delay between inhibitory neurons arises from their effective interaction via the excitatory cells which display postinhibitory rebound.
Resumo:
Intact Escherichia coli ribosomes have been projected into the gas phase of a mass spectrometer by means of nanoflow electrospray techniques. Species with mass/charge ratios in excess of 20,000 were detected at the level of individual ions by using time-of-flight analysis. Once in the gas phase the stability of intact ribosomes was investigated and found to increase as a result of cross-linking ribosomal proteins to the rRNA. By lowering the Mg2+ concentration in solutions containing ribosomes the particles were found to dissociate into 30S and 50S subunits. The resolution of the charge states in the spectrum of the 30S subunit enabled its mass to be determined as 852,187 ± 3,918 Da, a value within 0.6% of that calculated from the individual proteins and the 16S RNA. Further dissociation into smaller macromolecular complexes and then individual proteins could be induced by subjecting the particles to increasingly energetic gas phase collisions. The ease with which proteins dissociated from the intact species was found to be related to their known interactions in the ribosome particle. The results show that emerging mass spectrometric techniques can be used to characterize a fully functional biological assembly as well as its isolated components.
Resumo:
Autocrine ligands are important regulators of many normal tissues and have been implicated in a number of disease states, including cancer. However, because by definition autocrine ligands are synthesized, secreted, and bound to cell receptors within an intrinsically self-contained “loop,” standard pharmacological approaches cannot be used to investigate relationships between ligand/receptor binding and consequent cellular responses. We demonstrate here a new approach for measurement of autocrine ligand binding to cells, using a microphysiometer assay originally developed for investigating cell responses to exogenous ligands. This technique permits quantitative measurements of autocrine responses on the time scale of receptor binding and internalization, thus allowing investigation of the role of receptor trafficking and dynamics in cellular responses. We used this technique to investigate autocrine signaling through the epidermal growth factor receptor by transforming growth factor alpha (TGFα) and found that anti-receptor antibodies are far more effective than anti-ligand antibodies in inhibiting autocrine signaling. This result indicates that autocrine-based signals can operate in a spatially restricted, local manner and thus provide cells with information on their local microenvironment.
Resumo:
By using a Raman microscope, we show that it is possible to probe the conformational states in protein crystals and crystal fragments under growth conditions (in hanging drops). The flavin cofactor in the enzyme para-hydroxybenzoate hydroxylase can assume two conformations: buried in the protein matrix (“in”) or essentially solvent-exposed (“out”). By using Raman difference spectroscopy, we previously have identified characteristic flavin marker bands for the in and out conformers in the solution phase. Now we show that the flavin Raman bands can be used to probe these conformational states in crystals, permitting a comparison between solution and crystal environments. The in or out marker bands are similar for the respective conformers in the crystal and in solution; however, significant differences do exist, showing that the environments for the flavin's isoalloxazine ring are not identical in the two phases. Moreover, the Raman-band widths of the flavin modes are narrower for both in and out conformers in the crystals, indicating that the flavin exists in a more limited range of closely related conformational states in the crystal than in solution. In general, the ability to compare detailed Raman data for complexes in crystals and solution provides a means of bridging crystallographic and solution studies.