973 resultados para Polymers and Plastics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is part of the fields of Material Physics and Organic Electronics and aims to determine the charge carrier density and mobility in the hydrated conducting polymer–polyelectrolyte blend PEDOT:PSS. This kind of material combines electronic semiconductor functionality with selective ionic transport, biocompatibility and electrochemical stability in water. This advantageous material properties combination makes PEDOT:PSS a unique material to build organic electrochemical transistors (OECTs), which have relevant application as amplifying transducers for bioelectronic signals. In order to measure charge carrier density and mobility, an innovative 4-wire, contact independent characterization technique was introduced, the electrolyte-gated van der Pauw (EgVDP) method, which was combined with electrochemical impedance spectroscopy. The technique was applied to macroscopic thin film samples and micro-structured PEDOT:PSS thin film devices fabricated using photolithography. The EgVDP method revealed to be effective for the measurements of holes’ mobility in hydrated PEDOT:PSS thin films, which resulted to be <μ>=(0.67±0.02) cm^2/(V*s). By comparing this result with 2-point-probe measurements, we found that contact resistance effects led to a mobility overestimation in the latter. Ion accumulation at the drain contact creates a gate-dependent potential barrier and is discussed as a probable reason for the overestimation in 2-point-probe measurements. The measured charge transport properties of PEDOT:PSS were analyzed in the framework of an extended drift-diffusion model. The extended model fits well also to the non-linear response in the transport characterization and results suggest a Gaussian DOS for PEDOT:PSS. The PEDOT:PSS-electrolyte interface capacitance resulted to be voltage-independent, confirming the hypothesis of its morphological origin, related to the separation between the electronic (PEDOT) and ionic (PSS) phases in the blend.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthetic polymers constitute a wide class of materials which has enhanced the quality of human life, providing comforts and innovations. Anyway, the increasing production and the incorrect waste management, are leading to the occurrence of polymers in the environment, generating concern. To understand the extent of this issue, analytical investigation holds an essential position. Standardised methods have not established yet, and additional studies are required to improve the present knowledge. The main aim of this thesis was to provide comprehensive information about the potential of pyrolysis coupled with gas-chromatography and mass spectrometry (Py-GC-MS) for polymers investigation, from their characterisation to their identification and quantification in complex matrices. Water-soluble (poly(dimethylsiloxanes), PDMS bearing poly(ethylene glycol), PEG, side chains) and water-insoluble polymers (microplastics, MPs, and bioplastics) were studied. The different studies revealed the possibility to identify heterogeneous classes of polymers, fingerprinting the presence of PDMS copolymers and distinguishing chemically different polyurethanes (PURs). The occurrence of secondary reactions in pyrolysis of polymer mixtures was observed as possible drawback. Pyrolysis products indicative of secondary reactions and their reaction mechanisms were identified. Py-GC-MS also revealed its fundamental role for the identification of polymers composing commercial bioplastics items based. The results aided to identify chemicals that have the potential to migrate in sea waters. Investigations of environmental samples demonstrated the capability of Py-GC-MS to provide reliable, reproducible and comparable results about polymers in complex matrices (PEG-PDMS in sewage sludges and PURs and other MPs in road dusts and spider webs). Criticisms were especially found in quantitation, such as the retrieval reference materials, the construction of reliable calibration protocols and the occurrence of bias due to interferences between pyrolysis products. This thesis pursues the greater purpose to develop harmonised and standardised methods for environmental investigations of polymers, that is fundamental to assess the real state of the environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current issue of the resource of energy combined with the tendency to give a green footprint to our lifestyle have prompted the research to focus the attention on alternative sources with great strides in the optimization of polymeric photovoltaic devices. The research work described in this dissertation consists in the study of different semiconducting π-conjugated materials based on polythiophenes (Chapter I). In detail, the GRIM polymerization was deepened defining the synthetic conditions to obtain regioregular poly(3-alkylthiophene) (Chapter II). Since the use of symmetrical monomers functionalized with oxygen atom(s) allows to adopt easy synthesis leading to performing materials, disubstituted poly(3,4-dialkoxythiophene)s were successfully prepared, characterized and tested as photoactive materials in solar cells (Chapter III). A “green” resource of energy should be employed through sustainable devices and, for this purpose, the research work was continued on the synthesis of thiophene derivatives soluble in eco-friendly solvents. To make this possible, the photoactive layer was completely tailored starting from the electron-acceptor material. A fullerene derivative soluble in alcohols was successfully synthetized and adopted for the realization of the new devices (Chapter IV). New water/alcohol soluble electron-donor materials with different functional groups were prepared and their properties were compared (Chapter V). Once found the best ionic functional group, a new double-cable material was synthetized optimizing the surface area between the different materials (Chapter VI). Finally, other water/alcohol soluble materials were synthetized, characterized and used as cathode interlayers in eco-friendly devices (Chapter VII). In this work, all prepared materials were characterized by spectroscopy analyses, gel permeation chromatography and thermal analyses. Cyclic voltammetry, X-ray diffraction, atomic force microscopy and external quantum efficiency were used to investigate some peculiar aspects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a world where the problem of energy resources, pollution and all aspects related to these issues become more and more dominant, a greater commitment is needed in the search for solutions. The goal of this project is to make a contribution to the research and development of new materials to reduce the environmental impact in some fields. First of all, we tried to synthesize and prepare an isatin-based membrane which has the potential for use in separating industrial gases. Furthermore, ion exchange membranes, specifically hydroxide exchange membranes (HEMs) derived from the same product can be developed for fuel cells (HEMFC) applications. These materials are essential for energy conversion and storage. The most difficult challenge is to guarantee their thermal stability and stability in corrosive environments such as alkali without losing efficiency. In recent years the poly- hydroxyalkylation catalysed with superacids, e.g. TFSA, has become increasingly studied. This reaction is exploited for the synthesis of the compounds of this thesis. After a preliminary optimization of the reaction conditions it was concluded that due to the rigidity and excessive reactivity of the system, it was not possible to obtain the isatin-based membrane to evaluate the gas separation properties. The synthesis of precursor materials for HEMs was successful by using 1-(4-bromobutyl)indoline-2,3-dione (BID) instead of isatin. A characterization of the obtained polymers was carried out using NMR, TGA and DSC analyses, and subsequently the membranes were functionalized with different ammonium-based cations. Unfortunately, this last step was not successful due to the appearance of side reactions. Future studies on the mechanism and kinetics of the reaction solve this obstacle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plastics are polymers of conventional and extensive use in our day-to-day life. This is due to their light weight, adaptability to different uses and low prices. A downside of such extensive use is the environmental pollution arising from plastic production and disposal. Indeed, many commodity polymers are produced from non-renewable resources while other do not bio-degrade after their end-of-life disposal. Consequently, the ideal polymer comes from renewable raw materials and bio-degrades after its disposal, meaning that it would do little or no harm to the environment from the beginning to the end of its life cycle. In this thesis project a class of bio-based and bio-degradable co-polymers, namely poly(ester-amide)s, was investigated because of their tunable mechanical and bio-degradation properties as well as their renewable origin. Such polymers were synthetized and characterized thermically and mechanically. Furthermore, a scale-up procedure was developed and applied to one polymer and processing trials were made with the material obtained after scale-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is focused on the extraction and characterization of the Brazilian seaweed Sargassum filipendula alginate. Alginates obtained at different seasons were characterized by liquid state nuclear magnetic resonance spectroscopy and scanning electron microscopy. The alginate extraction efficiency was about 20%. Different seasons of the year and different stages in the life cycle of Sargassum sp. in southeastern Brazil influenced the M/G and, consequently, the technological properties of extracted alginates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transfer of reaction products formed on the surfaces of two mutually rubbed dielectric solids makes an important if not dominating contribution to triboelectricity. New evidence in support of this statement is presented in this report, based on analytical electron microscopy coupled to electrostatic potential mapping techniques. Mechanical action on contacting surface asperities transforms them into hot-spots for free-radical formation, followed by electron transfer producing cationic and anionic polymer fragments, according to their electronegativity. Polymer ions accumulate creating domains with excess charge because they are formed at fracture surfaces of pulled-out asperities. Another factor for charge segregation is the low polymer mixing entropy, following Flory and Huggins. The formation of fractal charge patterns that was previously described is thus the result of polymer fragment fractal scatter on both contacting surfaces. The present results contribute to the explanation of the centuries-old difficulties for understanding the triboelectric series and triboelectricity in general, as well as the dissipative nature of friction, and they may lead to better control of friction and its consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gellan microgels with potential application in delivery systems were obtained by physically cross-linked gellan gum. The microgels were produced by atomization followed by ionotropic gelation using CaCl2 (gellan/Ca) or KCl (gellan/K) as hardening agent and part of them were coated with chitosan in order to improve their resistance to gastric digestion. Size distribution, morphology and zeta potential of microgels were evaluated before and after in vitro digestion process. The long term stability was also evaluated. Spherical microparticles were obtained at gellan concentration above 0.6% w/w, showing average size among 70-120 μm. Most of the coated and uncoated microgels showed stability in aqueous media, except the uncoated gellan/K microgel. The in vitro digestion evaluation showed that all particles maintained their size and shape after the gastric digestion step. However, the enteric digestion caused disintegration of microgels indicating their potential application for enteric delivery systems. The chitosan-coated microgels showed lower degree of fragmentation when compared to the uncoated microgels, indicating that the coating process enable a better control of microgels releasing properties during the enteric digestion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although important advances have been made in this particular field, fundamental knowledge of the underlying mechanisms of SLN-mediated gene delivery is conspicuously lacking, an imperative requirement in efforts aimed at further improving their efficiency. Here, we address recent advances in the use of SLNs as platform for delivery of nucleic acids as therapeutic agents. In addition, we will discuss available technology for conveniently producing SLNs. In particular, we will focus on underlying molecular mechanisms by which SLNs and nucleic acids assemble into complexes and how the nucleic acid cargo may be released intracellularly. In discussing underlying mechanisms, we will, when appropriate, refer to analogous studies carried out with systems based on cationic lipids and polymers, that have proven useful in the assessment of structure-function relationships. Finally, we will give suggestions for improving SLN-based gene delivery systems, by pointing to alternative methods for SLNplex assembly, focusing on the realization of a sustained nucleic acid release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few decades, the textile industry has significantly increased investment in research to develop functional fabrics, with a special focus on those aggregating values. Such fabrics can exploit microparticles inferior to 100 μm, such as those made by complex coacervation in their creation. The antimicrobial properties of chitosan can be attributed to these microparticles. Developing particles with uniform structure and properties would facilitate the control for the eventual release of the core material. Thus, a complex coacervation between gelatin and chitosan was studied, and the optimal conditions were replicated in the encapsulation of limonene. Spherical particles formed had an average diameter (D3,2) of 30 μm and were prepared with 89.7% efficiency. Cross-linking of these microparticles using glutaraldehyde and tripolyphosphate was carried out before spray drying. After drying, microparticles cross-linked with glutaraldehyde were oxidized and clustered and those that were cross-linked with tripolyphosphate resisted drying and presented a high yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is the description of the strategies and advances in the use of MIP in the development of chemical sensors. MIP has been considered an emerging technology, which allows the synthesis of materials that can mimic some highly specific natural receptors such as antibodies and enzymes. In recent years a great number of publications have demonstrated a growth in their use as sensing phases in the construction of sensors . Thus, the MIP technology became very attractive as a promising analytical tool for the development of sensors.