954 resultados para Piezoelectric stack actuators
A low-complexity flight controller for Unmanned Aircraft Systems with constrained control allocation
Resumo:
In this paper, we propose a framework for joint allocation and constrained control design of flight controllers for Unmanned Aircraft Systems (UAS). The actuator configuration is used to map actuator constraint set into the space of the aircraft generalised forces. By constraining the demanded generalised forces, we ensure that the allocation problem is always feasible; and therefore, it can be solved without constraints. This leads to an allocation problem that does not require on-line numerical optimisation. Furthermore, since the controller handles the constraints, and there is no need to implement heuristics to inform the controller about actuator saturation. The latter is fundamental for avoiding Pilot Induced Oscillations (PIO) in remotely operated UAS due to the rate limit on the aircraft control surfaces.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
The aim of this paper is to compare the performances of the highly porous Nb2O5 Schottky based sensors formed using different catalytic metals for ethanol vapour sensing. The fabricated sensors consist of a fairly ordered nano-vein like porous Nb2O5 prepared via an elevated temperature anodization method. Subsequently, Pt, Pd and Au were sputtered as both Schottky contacts and catalysts for the comparative studies. These metals are chosen as they have large work functions in comparison to the electron affinity of the anodized Nb2O5. It is demonstrated that the device based on Pd/Nb2O5 Schottky contact has the highest sensitivity amongst the developed sensors. The sensing behaviors were studied in terms of the Schottky barrier height variations and properties of the metal catalysts.
Resumo:
This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.
Resumo:
Effective control of dense, high-quality carbon nanotube arrays using hierarchical multilayer catalyst patterns is demonstrated. Scanning/transmission electron microscopy, atomic force microscopy, Raman spectroscopy, and numerical simulations show that by changing the secondary and tertiary layers one can control the properties of the nanotube arrays. The arrays with the highest surface density of vertically aligned nanotubes are produced using a hierarchical stack of iron nanoparticles and alumina and silica layers differing in thickness by one order of magnitude from one another. The results are explained in terms of the catalyst structure effect on carbon diffusivity.
Resumo:
This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.
Resumo:
In 2006, Gaurav Gupta and Josef Pieprzyk presented an attack on the branch-based software watermarking scheme proposed by Ginger Myles and Hongxia Jin in 2005. The software watermarking model is based on replacing jump instructions or unconditional branch statements (UBS) by calls to a fingerprint branch function (FBF) that computes the correct target address of the UBS as a function of the generated fingerprint and integrity check. If the program is tampered with, the fingerprint and/or integrity checks change and the target address is not computed correctly. Gupta and Pieprzyk's attack uses debugger capabilities such as register and address lookup and breakpoints to minimize the requirement to manually inspect the software. Using these resources, the FBF and calls to the same is identified, correct displacement values are generated and calls to FBF are replaced by the original UBS transferring control of the attack to the correct target instruction. In this paper, we propose a watermarking model that provides security against such debugging attacks. Two primary measures taken are shifting the stack pointer modification operation from the FBF to the individual UBSs, and coding the stack pointer modification in the same language as that of the rest of the code rather than assembly language to avoid conspicuous contents. The manual component complexity increases from O(1) in the previous scheme to O(n) in our proposed scheme.
Resumo:
Vehicular Ad-hoc Networks (VANETs) can make roads safer, cleaner, and smarter. It can offer a wide range of services, which can be safety and non-safety related. Many safety-related VANETs applications are real-time and mission critical, which would require strict guarantee of security and reliability. Even non-safety related multimedia applications, which will play an important role in the future, will require security support. Lack of such security and privacy in VANETs is one of the key hindrances to the wide spread implementations of it. An insecure and unreliable VANET can be more dangerous than the system without VANET support. So it is essential to make sure that “life-critical safety” information is secure enough to rely on. Securing the VANETs along with appropriate protection of the privacy drivers or vehicle owners is a very challenging task. In this work we summarize the attacks, corresponding security requirements and challenges in VANETs. We also present the most popular generic security policies which are based on prevention as well detection methods. Many VANETs applications require system-wide security support rather than individual layer from the VANETs’ protocol stack. In this work we will review the existing works in the perspective of holistic approach of security. Finally, we will provide some possible future directions to achieve system-wide security as well as privacy-friendly security in VANETs.
Resumo:
Piezoelectric energy harvesters can be used to convert ambient energy into electrical energy and power small autonomous devices. In recent years, massive effort has been made to improve the energy harvesting ability in piezoelectric materials. In this study, reduced graphene oxide was added into poly(vinylidene fluoride) to fabricate the piezoelectric nanocomposite films. Open-circuit voltage and electrical power harvesting experiments showed remarkable enhancement in the piezoelectricity of the fabricated poly(vinylidene fluoride)/reduced graphene oxide nanocomposite, especially at an optimal reduced graphene oxide content of 0.05 wt%. Compared to pristine poly(vinylidene fluoride) films, the open-circuit voltage, the density of harvested power of alternating current, and direct current of the poly(vinylidene fluoride)/reduced graphene oxide nanocomposite films increased by 105%, 153%, and 233%, respectively, indicating a great potential for a broad range of applications.
Resumo:
A nine level modular multilevel cascade converter (MMCC) based on four full bridge cells is shown driving a piezoelectric ultrasonic transducer at 71 and 39 kHz, in simulation and experimentally. The modular cells are small stackable PCBs, each with two fully integrated surface mount 22 V, 40 A MOSFET half-bridge converters, and include all control signal and power isolation. In this work, the bridges operate at 12 V and 384 kHz, to deliver a 96 Vpp 9 level waveform with an effective switching frequency of 3 MHz. A 9 pH air cored inductor forms a low pass filter in conjunction with the 3000 pF capacitance of the transducer load. Eight equally phase-displaced naturally sampled pulse width modulation (PWM) drive signals, along with the modulating sinusoid, are generated using phase accumulation techniques in a dedicated FPGA. Experimental time domain and FFT plots of the multilevel and transducer output waveforms are presented and discussed.
Resumo:
The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm−1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm−1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.
Resumo:
A novel, uncomplicated and rapid method of analysis for organophosphorus (OP) pesticides was researched and developed using the important, common OP, dipterex, as a typical example. The basis of the method involved the citrate-capped silver nanoparticles (citrate-capped AgNPs) and Acetylthiocholine (ATCh). The latter compound can be catalyzed by Acetylcholinesterase (AChE) to form thiocholine (TCh), which induces the aggregation of AgNPs. Correspondingly, the color of AgNPs in solution changes from bright yellow to pink, and the UV–vis characteristic absorption peak of AgNPs at about 400 nm decreases; simultaneously, a new absorption band appears at about 520 nm. Irreversible inhibition of AChE activity caused by dipterex, prevents the aggregation of AgNPs. Thus, a UV–vis spectrophotometric method was developed for the analysis of dipterex. The absorbance ratio A396 nm/A520 nm was found to be linearly related to the concentration of dipterex in the range of 0.25–37.5 ng mL−1 with a detection limit of 0.18 ng mL−1. This method was used successfully to analyse dipterex in spiked, different water samples.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.