916 resultados para Physiological traits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular calcium participates in several key physiological functions, such as control of blood coagulation, bone calcification or muscle contraction. Calcium homeostasis in humans is regulated in part by genetic factors, as illustrated by rare monogenic diseases characterized by hypo or hypercalcaemia. Both serum calcium and urinary calcium excretion are heritable continuous traits in humans. Serum calcium levels are tightly regulated by two main hormonal systems, i.e. parathyroid hormone and vitamin D, which are themselves also influenced by genetic factors. Recent technological advances in molecular biology allow for the screening of the human genome at an unprecedented level of detail and using hypothesis-free approaches, such as genome-wide association studies (GWAS). GWAS identified novel loci for calcium-related phenotypes (i.e. serum calcium and 25-OH vitamin D) that shed new light on the biology of calcium in humans. The substantial overlap (i.e. CYP24A1, CASR, GATA3; CYP2R1) between genes involved in rare monogenic diseases and genes located within loci identified in GWAS suggests a genetic and phenotypic continuum between monogenic diseases of calcium homeostasis and slight disturbances of calcium homeostasis in the general population. Future studies using whole-exome and whole-genome sequencing will further advance our understanding of the genetic architecture of calcium homeostasis in humans. These findings will likely provide new insight into the complex mechanisms involved in calcium homeostasis and hopefully lead to novel preventive and therapeutic approaches. Keyword: calcium, monogenic, genome-wide association studies, genetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Childhood obesity and physical inactivity are increasing dramatically worldwide. Children of low socioeconomic status and/or children of migrant background are especially at risk. In general, the overall effectiveness of school-based programs on health-related outcomes has been disappointing. A special gap exists for younger children and in high risk groups. This paper describes the rationale, design, curriculum, and evaluation of a multicenter preschool randomized intervention study conducted in areas with a high migrant population in two out of 26 Swiss cantons. Twenty preschool classes in the German (canton St. Gallen) and another 20 in the French (canton Vaud) part of Switzerland were separately selected and randomized to an intervention and a control arm by the use of opaque envelopes. The multidisciplinary lifestyle intervention aimed to increase physical activity and sleep duration, to reinforce healthy nutrition and eating behaviour, and to reduce media use. According to the ecological model, it included children, their parents and the teachers. The regular teachers performed the majority of the intervention and were supported by a local health promoter. The intervention included physical activity lessons, adaptation of the built infrastructure; promotion of regional extracurricular physical activity; playful lessons about nutrition, media use and sleep, funny homework cards and information materials for teachers and parents. It lasted one school year. Baseline and post-intervention evaluations were performed in both arms. Primary outcome measures included BMI and aerobic fitness (20 m shuttle run test). Secondary outcomes included total (skinfolds, bioelectrical impedance) and central (waist circumference) body fat, motor abilities (obstacle course, static and dynamic balance), physical activity and sleep duration (accelerometry and questionnaires), nutritional behaviour and food intake, media use, quality of life and signs of hyperactivity (questionnaires), attention and spatial working memory ability (two validated tests). Researchers were blinded to group allocation. The purpose of this paper is to outline the design of a school-based multicenter cluster randomized, controlled trial aiming to reduce body mass index and to increase aerobic fitness in preschool children in culturally different parts of Switzerland with a high migrant population. Trial Registration: (clinicaltrials.gov) NCT00674544.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic kidney disease (CKD), impairment of kidney function, is a serious public health problem, and the assessment of genetic factors influencing kidney function has substantial clinical relevance. Here, we report a meta-analysis of genome-wide association studies for kidney function-related traits, including 71,149 east Asian individuals from 18 studies in 11 population-, hospital- or family-based cohorts, conducted as part of the Asian Genetic Epidemiology Network (AGEN). Our meta-analysis identified 17 loci newly associated with kidney function-related traits, including the concentrations of blood urea nitrogen, uric acid and serum creatinine and estimated glomerular filtration rate based on serum creatinine levels (eGFRcrea) (P < 5.0 × 10(-8)). We further examined these loci with in silico replication in individuals of European ancestry from the KidneyGen, CKDGen and GUGC consortia, including a combined total of ∼110,347 individuals. We identify pleiotropic associations among these loci with kidney function-related traits and risk of CKD. These findings provide new insights into the genetics of kidney function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les syndromes de déficiences cérébrales en créatine (CCDS) sont dus à des mutations dans les gènes GATM et G AMT (codant pour les enzymes AGAT et G AMT de la voie de synthèse de créatine) ainsi que SLC6A8 (transporteur de créatine), et génèrent une absence ou une très forte baisse de créatine (Cr) dans le cerveau, mesurée par spectroscopic de résonance magnétique. Les patients CCDS développent des handicaps neurologiques sévères. Les patients AGAT et GAMT peuvent être traités avec des doses importantes de Cr, mais gardent dans la plupart des cas des séquelles neurologiques irréversibles. Aucun traitement efficace n'existe à ce jour pour la déficience en SLC6A8. Bien que de nombreux modèles aient été développés pour comprendre la Cr cérébrale en conditions physiologiques, les pathomécanismes des CCDS ne sont pas encore compris. Des souris transgéniques pour les gènes Gatm, Gamt et Slc6a8 ont été générées, mais elles ne miment que partiellement la pathologie humaine. Parmi les CCDS, la déficience en GAMT est la plus sévère, en raison de l'accumulation cérébrale de l'intermédiaire guanidinoacétate (GAA). Alors que la toxicité cérébrale du GAA a été étudiée par exposition directe au GAA d'animaux adultes sains, les mécanismes de la toxicité du GAA en condition de déficience en GAMT dans le cerveau en développement sont encore inconnus. Le but de ce projet était donc de développer un modèle de déficience en GAMT dans des cultures 3D primaires de cellules nerveuses de rat en agrégats par knock-down du gène GAMT, en utilisant un virus adéno-associé (AAV) induisant le mécanisme d'interférence à l'ARN (RNAi). Le virus scAAV2, à la multiplicité d'infection de 1000, s'est révélé le plus efficace pour transduire tous les types de cellules nerveuses des cultures (neurones, astrocytes, oligodendrocytes), et générer un knock-down maximal de la protéine GAMT de 85% (jour in vitro 18). Cette déficience partielle en GAMT s'est révélée insuffisante pour générer une déficience en Cr, mais a causé l'accumulation attendue de GAA, à des doses comparables aux niveaux observés dans le LCR des patients GAMT. Le GAA a induit une croissance axonale anarchique accompagnée d'une baisse de l'apoptose naturelle, suivis par une induction tardive de mort cellulaire non-apoptotique. Le co-traitement par la Cr a prévenu tous les effets toxiques du GAA. Ce travail montre que l'accumulation de GAA en absence de déficience en Cr est suffisante pour affecter le développement du tissu nerveux, et suggère que des formes de déficiences en GAMT supplémentaires, ne présentant pas de déficiences en Cr, pourraient être découvertes par mesure du GAA, en particulier à travers les programmes récemment proposés de dépistage néonatal de la déficience en GAMT. -- Cerebral creatine deficiency syndromes (CCDS) are caused by mutations in the genes GATM and GAMT (respectively coding for the two enzymes of the creatine synthetic pathway, AGAT and GAMT) as well as SLC6A8 (creatine transporter), and lead to the absence or very strong decrease of creatine (Cr) in the brain when measured by magnetic resonance spectroscopy. Affected patients show severe neurological impairments. While AGAT and GAMT deficient patients can be treated with high dosages of Cr, most remain with irreversible brain sequelae. No treatment has been successful so far for SLC6A8 deficiency. While many models have helped understanding the cerebral Cr pathways in physiological conditions, the pathomechanisms underlying CCDS are yet to be elucidated. Transgenic mice carrying mutations in the Gatm, Gamt and Slc6a8 genes have been developed, but only partially mimic the human pathology. Among CCDS, GAMT deficiency is the most severe, due to the CNS accumulation of the guanidinoacetate (GAA) intermediate. While brain toxicity of GAA has been explored through direct GAA exposure of adult healthy animals, the mechanisms underlying GAA toxicity in GAMT deficiency conditions on the developing CNS are yet unknown. The aim of this project was thus to develop and characterize a GAMT deficiency model in developing brain cells by gene knockdown, by adeno-associated virus (AAV)-driven RNA interference (RNAi) in rat 3D organotypic primary brain cell cultures in aggregates. scAAV2 with a multiplicity of infection of 1000 was shown as the most efficient serotype, was able to transduce all brain cell types (neurons, astrocytes, oligodendrocytes) and to induce a maximal GAMT protein knockdown of 85% (day in vitro 18). Metabolite analysis showed that partial GAMT knockdown was insufficient to induce Cr deficiency but generated the awaited GAA accumulation at concentrations comparable to the levels observed in cerebrospinal fluid of GAMT-deficient patients. Accumulated GAA induced axonal hypersprouting paralleled with inhibition of natural apoptosis, followed by a later induction in non-apoptotic cell death. Cr supplementation led to the prevention of all GAA-induced toxic effects. This work shows that GAA accumulation without Cr deficiency is sufficient to affect CNS development, and suggests that additional partial GAMT deficiencies, which may not show the classical brain Cr deficiency, may be discovered through GAA measurement including by recently proposed neonatal screening programs for GAMT deficiency.