984 resultados para Organic Load
Resumo:
This paper describes the design and development of a thermoelectric gas sensor suitable for the detection of Volatile Organic Compounds (VOCs). In order to enhance the seebeck coefficient of the sensor, we have deposited chromium metal films on a limited area of the glass substrate. Tin oxide thin film was deposited on top of these metal films. The resulting metal/semiconductor film exhibits a high seebeck coefficient of 400 mu V/ degrees C. Platinum catalyst film deposited on the oxide film to create the necessary temperature gradient resulted in further enhancement in the sensitivity of the sensor to target gases. The sensor shows high sensitivity to ppm-change in the concentration of target hydrocarbons at a relatively low temperature of 120 degrees C.
Resumo:
One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.
Resumo:
The author presents adaptive control techniques for controlling the flow of real-time jobs from the peripheral processors (PPs) to the central processor (CP) of a distributed system with a star topology. He considers two classes of flow control mechanisms: (1) proportional control, where a certain proportion of the load offered to each PP is sent to the CP, and (2) threshold control, where there is a maximum rate at which each PP can send jobs to the CP. The problem is to obtain good algorithms for dynamically adjusting the control level at each PP in order to prevent overload of the CP, when the load offered by the PPs is unknown and varying. The author formulates the problem approximately as a standard system control problem in which the system has unknown parameters that are subject to change. Using well-known techniques (e.g., naive-feedback-controller and stochastic approximation techniques), he derives adaptive controls for the system control problem. He demonstrates the efficacy of these controls in the original problem by using the control algorithms in simulations of a queuing model of the CP and the load controls.
Resumo:
Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.
Resumo:
The phase equilibrium studies of organic system, involving resorcinol (R) and p-dimethylaminobenzaldehyde (DMAB), reveal the formation of a 1:1 molecular complex with two eutectics. The heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and the excess thermodynamic functions were calculated based on enthalpy of fusion data determined via differential scanning calorimetric (DSC) method. X-ray powder diffraction studies confirm that the eutectics are not simple mechanical mixture of the components under investigation. The spectroscopic investigations (IR and NMR) suggest the occurrence of hydrogen bonding between the components forming the molecular complex. The dielectric measurements, carried out on hot-pressed addition compound (molecular complex), show higher dielectric constant at 320 K than that of individual components. The microstructural investigations of eutectic and addition compound indicate dendritic and faceted morphological features. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The discrepancies between the non-interacting models and experimental results for conjugated systems is highlighted in this brief review. The interacting model hamiltonians correctly give the forbidden singlet state below the optical gap in polyenes and also explain both the nonvanishing optical gap in polyacetylenes and the vanishing optical gap in symmetric cyanine dyes. The negative spin densities in polyene radicals is also understood in terms of a correlated picture. The role of electron-electron interactions in other strongly correlated systems, such as polydiacetylene and mixed and segregated stack charge transfer solids, are also briefly discussed.
Resumo:
Yhteenveto: Elohopea Suomen metsäjärvissä ja tekoaltaissa: ihmisen vaikutus kuormitukseen ja pitoisuuksiin kaloissa.
Resumo:
Polarizabilities and Hyperpolarizabilities of conjugated organic chains are calculated using correlated model Hamiltonians. While correlations reduce the Polarizabilities and extend the range of linear response, the Hyperpolarizabilities essentially are unaffected by the same. This explains the apparently large Hyperpolarizabilities of conjugated electronic systems.
Resumo:
The metal-organic frameworks, in recent years, show a variety of new developments that includes new methods of preparation, post synthesis modifications and novel class of compounds. Though most of the developments happened in the carboxylate based family of compounds, the other related systems are also equally interesting. In this article,we have highlighted some of the developments that have taken place in the family of non-carboxylate metal-organic frameworks. We have also highlighted some of the recent attempts at modifying the surfaces and pores of the MOFs by careful chemical manipulations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.
Resumo:
A solution for the stresses and displacements in an radially infinite thick plate having a circular hole, one face of which resting on a smooth rigid bed and the other face subjected to axisymmetric normal loading is given. The solution is obtained in terms of Fourier-Bessel series and integral for the Love's stress function. Numerical results are presented for one particular ratio of thickness of plate to the hole radius and loading. It is also shown that the Poisson's ratio has a predominant effect on certain stresses and displacements. The solution would be useful in the stress analysis of bolted joints.Eine Lösung für die Spannungen und Verschiebungen in einer radial, unendlich ausgedehnten, dicken Platte mit einem kreisförmigen Loch, wobei eine Seite auf einer ebenen, starren Unterlage aufliegt, die andere Seite durch eine achsensymmetrische Vertikallast belastet ist, wird angegeben. Die Lösung wird in Form von Fourier-Bessel-Reihen und Integralen der Loveschen Spannungsfunktion angegeben. Numerische Ergebnisse werden für ein bestimmtes Verhältnis der Plattendicke zum Lochradius sowie zur Belastung angegeben. Es wird auch gezeigt, daß das Poisssonsche Verhältnis einen besonderen Einfluß auf bestimmte Spannungen und Verschiebungen hat. Die Lösung ist anwendbar für die Spannungsermittlung von Bolzenverbindungen.
Resumo:
Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.
Resumo:
Dioxins are organic toxicants that are known to impair tooth development, especially dental hard tissue formation. The most toxic dioxin congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further, clinical studies suggest that maternal smoking during pregnancy can affect child s tooth development. One of the main components of tobacco smoke is the group of non-halogenated polycyclic aromatic hydrocarbons (PAHs), a representative of which is 7,12-dimethylbenz[a]anthracene (DMBA). Tributyltin (TBT), an organic tin compound, has been shown to impair bone mineralization in experimental animals. In addition to exposure to organic toxicants, a well-established cause for enamel hypomineralization is excess fluoride intake. The principal aim of this thesis project was to examine in vitro if, in addition to dioxins, other organic environmental toxicants, like PAHs and organic tin compounds, have adverse effects on tooth development, specifically on formation and mineralization of the major dental hard tissues, the dentin and the enamel. The second aim was to investigate in vitro if fluoride could intensify the manifestation of the detrimental developmental dental effects elicited by TCDD. The study was conducted by culturing mandibular first and second molar tooth germs of E18 NMRI mouse embryos in a Trowell-type organ culture and exposing them to DMBA, TBT, and sodium fluoride (NaF) and/or TCDD at various concentrations during the secretory and mineralization stages of development. Specific methods used were HE-staining for studying cell and tissue morphology, BrdU-staining for cell proliferation, TUNEL-staining for apoptosis, and QPCR, in situ hybridization and immunohistochemistry for the expressions of selected genes associated with mineralization. This thesis work showed that DMBA, TBT, TCDD and NaF interfere with dentin and enamel formation of embryonic mouse tooth in vitro, and that fluoride can potentiate the harmful effect of TCDD. The results suggested that adverse effects of TBT involve altered expression of genes associated with mineralization, and that DMBA and TBT as well as NaF and TCDD together primarily affect dentin mineralization. Since amelogenesis does not start until mineralization of dentin begins, impaired enamel matrix secretion could be a secondary effect. Dioxins, PAHs and organotins are all liposoluble and can be transferred to the infant by breast-feeding. Since doses are usually very low, developmental toxicity on most of the organs is difficult to indentify clinically. However, tooth may act as an indicator of exposure, since the major dental hard tissues, the dentin and the enamel, are not replaced once they have been formed. Thus, disturbed dental hard tissue formation raises the question of more extensive developmental toxicity.