985 resultados para Matrices genéricas
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Auditoria, sob orientação do Mestre Paulino Silva
Resumo:
Sparse matrix-vector multiplication (SMVM) is a fundamental operation in many scientific and engineering applications. In many cases sparse matrices have thousands of rows and columns where most of the entries are zero, while non-zero data is spread over the matrix. This sparsity of data locality reduces the effectiveness of data cache in general-purpose processors quite reducing their performance efficiency when compared to what is achieved with dense matrix multiplication. In this paper, we propose a parallel processing solution for SMVM in a many-core architecture. The architecture is tested with known benchmarks using a ZYNQ-7020 FPGA. The architecture is scalable in the number of core elements and limited only by the available memory bandwidth. It achieves performance efficiencies up to almost 70% and better performances than previous FPGA designs.
Resumo:
Trabalho Final de mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização em Automação e Sistemas
Resumo:
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
Mestrado em Engenharia Civil – Ramo Estruturas
Resumo:
Relatório de Estágio
Resumo:
No presente relatório é apresentado um estudo, realizado na forma de estágio curricular, na empresa Águas do Douro e Paiva, S.A., doravante AdDP, entre 31 de Janeiro e 31 de Julho de 2014, sobre reabilitação interior de reservatórios para água potável. Inicialmente é feito um enquadramento ao tema, com uma abordagem às características genéricas dos reservatórios de água potável e às principais patologias que se verificam no interior desses reservatórios. De seguida, são detalhadas as principais técnicas de reabilitação interior existentes, de acordo com o tipo de patologias encontradas. Como complemento a esse estudo, são apresentados os principais fornecedores e os produtos mais utilizados em cada fase da reabilitação, de acordo com a pesquisa realizada e com as reuniões presenciadas. Por fim, são ainda apresentadas, as principais considerações a ter em conta na lavagem e desinfeção de reservatórios. Atendendo à problemática em causa, foi desenvolvida uma ficha técnica para cada reservatório que, além da sistematização das características principais, tem o objetivo de registar todas as intervenções de reabilitação ou de conservação que possam ocorrer no mesmo. Para tal, foi feito um acompanhamento dos problemas e intervenções verificadas, e surgiu, ainda, a oportunidade de acompanhar o processo de lançamento a concurso das obras de reabilitação que surgiram dessa caracterização. Por fim, foi explorada a componente de gestão patrimonial de infraestruturas, com o desenvolvimento de uma matriz de risco qualitativa, específica para aplicação aos reservatórios da AdDP, com o objetivo de constituir uma ferramenta de apoio à decisão e planeamento das intervenções de reabilitação interior. Embora fora do contexto da reabilitação interior de reservatórios, é de assinalar a importante experiência proporcionada no acompanhamento da obra de alargamento do sistema multimunicipal de abastecimento de água ao concelho de Amarante, que incluiu a instalação de conduta e construção de duas estações elevatórias.
Resumo:
Portugal continental apresenta uma vasta área florestal, que representa cerca de 35,4% da ocupação total do solo, com predominância de espécies como o eucalipto (Eucalyptus globulus) e o pinheiro-bravo (Pinus pinaster). Estas espécies apresentam uma elevada importância a nível económico, designadamente devido à sua ampla utilização, nomeadamente na indústria de celulose e papel, gerando elevadas quantidades de resíduos. Este resíduo de biomassa florestal é utilizado, na sua totalidade, para a geração de energia, na forma de eletricidade ou aquecimento. No entanto, existem outras opções viáveis, a nível económico, tais como a valorização destes subprodutos como fonte de compostos polifenólicos tornando-os, assim, um produto de valor acrescentado. A extração de compostos fenólicos de subprodutos florestais, como folhas de eucalipto e agulhas de pinheiros tem vindo a aumentar devido, principalmente, à substituição de antioxidantes sintéticos, contribuindo para a valorização de subprodutos florestais. Contudo, apesar de todas as potenciais aplicações e vantagens, apenas algumas centenas de espécies aromáticas identificadas são utilizadas à escala comercial. Neste trabalho foi avaliada a capacidade antioxidante de subprodutos da floresta, otimizando as condições de extração através do estudo dos fatores: tempo de extração, temperatura e composição de solvente através do método de superfície de resposta. O planeamento experimental utilizado teve como base um planeamento de compósito central e a avaliação do perfil de antioxidantes das matrizes analisadas foi realizada através de métodos de quantificação total, como o teor fenólico total, a atividade anti-radicalar – método do DPPH (radical 2,2-difenil-1-picrilhidrazilo) e o método de FRAP. Estes métodos analíticos convencionais foram modificados e, devidamente validados, para a análise em leitor de microplacas. Verificou-se que os extratos de pinheiro e de eucalipto, tanto as amostras verdes com as amostras, apresentam uma promissora capacidade antioxidante. O planeamento fatorial aplicado permitiu otimizar as condições de extração em relação às matrizes verdes. Contudo, o mesmo não se verificou em relação às matrizes secas. A composição (% de água) é sem dúvida o fator com mais efeito em todas as amostras (coeficientes de primeira e segunda ordem no modelo). Também a temperatura foi identificada como um fator com efeito significativo sobre os sistemas em análise.
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa in partial fulfillment of the requirements for the obtention of the degree of Master of Science in Biotechnology
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
O Biodiesel é uma fonte de energia renovável que actualmente se encontra em expansão. O Biodiesel é constituído por uma mistura de ésteres alquílicos de ácidos gordos. A existência de ácidos gordos insaturados torna o Biodiesel quimicamente menos estável, podendo ocorrer oxidação, degradação e polimerização do combustível, se este for inadequadamente armazenado ou transportado. O objectivo deste trabalho consistiu em avaliar a eficiência da utilização de antioxidantes fenólicos (ácido protocatecuico, ácido gálico, ácido 3,4 di-hidroxifenilacético, ácido cafeico, ácido hidrocafeico, ácido 3,4,5-tri-hidroxicinâmico, ácido m-coumárico e ácido p-coumárico), na estabilização do Biodiesel. O estudo envolveu a análise da influência do uso de cada um dos antioxidantes na inibição da peroxidação lipídica do ácido linoleico um dos principais ácidos gordos insaturados presentes na matéria-prima utilizada na produção de Biodiesel. A avaliação do efeito de inibição dos antioxidantes na peroxidação do ácido linoleico foi efetuada usando o método do tiocianato de ferro (III). Os resultados obtidos demonstraram, que todos os ácidos fenólicos estudados, apresentam uma elevada capacidade para inibir a peroxidação lipídica do ácido linoleico. As percentagens de inibição da peroxidação do ácido linoleico variaram entre os 72%, observada para o ácido p-coumárico, e os 82 %, verificada para o ácido protocatecuico. A eficiência de inibição da peroxidação por parte dos antioxidantes fenólicos em estudo foi comparada com a obtida utilizando um antioxidante de referência, o trolox. A eficiência de inibição obtida para todos os antioxidantes fenólicos estudados foi muito superior à observada para o trolox. Os resultados obtidos nesta dissertação permitem concluir que a utilização de ácidos fenólicos constitui uma boa alternativa para a estabilização de matrizes lipídicas, particularmente em combustíveis como o Biodiesel.