995 resultados para MAGNETIC FLUID
Resumo:
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
Resumo:
We report the performances of a double focusing magnetic beta spectrometer. The energy resolution was measured using conversion peaks of Cs-137 and Ba-133 at 0.73% for 624 keV, and 1.33% for 124 keV. The counting efficiency as a function of the energy was estimated using a P-32 source and was used to correct the measured spectra of Cs-137. The result was compared with the theoretical spectrum and we found a good agreement.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
Combining measurements of the monoamine metabolites in the cerebrospinal fluid (CSF) and neuroimaging can increase efficiency of drug discovery for treatment of brain disorders. To address this question, we examined five drug-naïve patients suffering from schizophrenic disorder. Patients were assessed clinically, using the Positive and Negative Syndrome Scale (PANSS): at baseline and then at weekly intervals. Plasma and CSF levels of quetiapine and norquetiapine as well CSF 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindole-acetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were obtained at baseline and again after at least a 4 week medication trail with 600 mg/day quetiapine. CSF monoamine metabolites levels were compared with dopamine D(2) receptor occupancy (DA-D(2)) using [(18)F]fallypride and positron emission tomography (PET). Quetiapine produced preferential occupancy of parietal cortex vs. putamenal DA-D(2), 41.4% (p<0.05, corrected for multiple comparisons). DA-D(2) receptor occupancies in the occipital and parietal cortex were correlated with CSF quetiapine and norquetiapine levels (p<0.01 and p<0.05, respectively). CSF monoamine metabolites were significantly increased after treatment and correlated with regional receptor occupancies in the putamen [DOPAC: (p<0.01) and HVA: (p<0.05)], caudate nucleus [HVA: (p<0.01)], thalamus [MHPG: (p<0.05)] and in the temporal cortex [HVA: (p<0.05) and 5-HIAA: (p<0.05)]. This suggests that CSF monoamine metabolites levels reflect the effects of quetiapine treatment on neurotransmitters in vivo and indicates that monitoring plasma and CSF quetiapine and norquetiapine levels may be of clinical relevance.
Resumo:
Fluorescence cystoscopy enhances detection of early bladder cancer. Water used to inflate the bladder during the procedure rapidly contains urine, which may contain fluorochromes. This frequently degradesfluorescence images. Samples of bladder washout fluid (BWF) or urine were collected (15 subjects). We studiedtheir fluorescence properties and assessed changes induced by pH (4 to 9) and temperature (15°C to 41°C).A typical fluorescence spectrum of BWF features a main peak (excitation/emission: 320∕420 nm, FWHM =50∕100 nm) and a weaker (5% to 20% of main peak intensity), secondary peak (excitation/emission: 455∕525 nm, FWHM = 80∕50 nm). Interpatient fluctuations of fluorescence intensity are observed. Fluorescence intensity decreases when temperature increases (max 30%) or pH values vary (max 25%). Neither approach is compatible with clinical settings. Fluorescence lifetime measurements suggest that 4-pyridoxic acid/riboflavin is the most likely molecule responsible for urine's main/secondary fluorescence peak. Our measurements give an insight into the spectroscopy of the detrimental background fluorescence. This should be included in the optical design of fluorescence cystoscopes. We estimate that restricting the excitation range from 370-430 nm to 395-415 nm would reduce the BWF background by a factor 2.
Resumo:
Cerebrospinal fluid Etravirine concentrations were measured in 12 asymptomatic HIV-infected patients. Median ETR concentration in plasma was 611.5 ng/mL (148-991) and median CSF ETR concentration was 7.24 ng/ml (3.5-17.9). In all cases Etravirine levels were above the IC50 range(0.39-2.4ng/ml) and CSF viral load was &40 copies/ml in all patients with undetectable plasma viral load. Our data suggest that ETR achieves concentrations several times above the IC50 range in CSF. All patients with undetectable plasma viral load were virologically suppressed in CSF while receiving an ETR-containing regimen. ETR may help in controlling HIV-1 in CNS.
Resumo:
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.
Resumo:
A metasomatic diopside rock occurs at the top of the dolomitic Connemara Marble Formation of western Ireland and contains titanite and K-feldspar in addition to around 90% diopside (X(Mg) = 0.90-0.97). U-Pb isotopic measurements on this mineral assemblage show that the titanite is both unusually uranium-rich and isotopically concordant, with the result that a precise U-Pb age of 478 +/- 2.5 Ma can be determined. The age is identical within error to a less precise Rb-Sr age of diopside-K-feldspar of 483 +/- 6 Ma. Petrological evidence indicates that the assemblage crystallized at c. 620-degrees-C close to or below the closure temperature of titanite. The age thus provides a precise estimate of the time of metamorphism; this age is 11 +/- 3 Ma younger than the 490 Ma age for nearby gabbroic plutons which has previously been used to constrain the peak metamorphic age. This difference accords well with geological evidence that the gabbros were emplaced prior to the metamorphic peak. Analysis of minerals with high closure temperature from assemblages whose crystallization is unambiguously associated with a specific episode of fluid infiltration at the peak of metamorphism provides the basis for a new approach to dating metamorphism. The success of this approach is demonstrated by the results from Connemara.
Resumo:
BACKGROUND: An accurate, noninvasive technique for the diagnosis of coronary disease would be an important advance. We investigated the accuracy of coronary magnetic resonance angiography among patients with suspected coronary disease in a prospective, multicenter study. METHODS: Coronary magnetic resonance angiography was performed during free breathing in 109 patients before elective x-ray coronary angiography, and the results of the two diagnostic procedures were compared. RESULTS: A total of 636 of 759 proximal and middle segments of coronary arteries (84 percent) were interpretable on magnetic resonance angiography. In these segments, 78 (83 percent) of 94 clinically significant lesions (those with a > or = 50 percent reduction in diameter on x-ray angiography) were also detected by magnetic resonance angiography. Overall, coronary magnetic resonance angiography had an accuracy of 72 percent (95 percent confidence interval, 63 to 81 percent) in diagnosing coronary artery disease. The sensitivity, specificity, and accuracy for patients with disease of the left main coronary artery or three-vessel disease were 100 percent (95 percent confidence interval, 97 to 100 percent), 85 percent (95 percent confidence interval, 78 to 92 percent), and 87 percent (95 percent confidence interval, 81 to 93 percent), respectively. The negative predictive values for any coronary artery disease and for left main artery or three-vessel disease were 81 percent (95 percent confidence interval, 73 to 89 percent) and 100 percent (95 percent confidence interval, 97 to 100 percent), respectively. CONCLUSIONS: Among patients referred for their first x-ray coronary angiogram, three-dimensional coronary magnetic resonance angiography allows for the accurate detection of coronary artery disease of the proximal and middle segments. This noninvasive approach reliably identifies (or rules out) left main coronary artery or three-vessel disease.
Resumo:
MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy.
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.