875 resultados para Laboratory and Basic Science Research


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a heuristic investigation of mixed methods organized around three pairs of opposing standpoints: methods (qualitative vs. quantitative), paradigms (constructivist vs. post positive), and inquiry approaches (dialectical vs. pragmatic).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The relationship between mental health and climate change are poorly understood. Participatory methods represent ethical, feasible, and culturally-appropriate approaches to engage community members for mental health promotion in the context of climate change. Aim: Photovoice, a community-based participatory research methodology uses images as a tool to deconstruct problems by posing meaningful questions in a community to find actionable solutions. This community-enhancing technique was used to elicit experiences of climate change among women in rural Nepal and the association of climate change with mental health. Subjects and methods: Mixed-methods, including in-depth interviews and self-report questionnaires, were used to evaluate the experience of 10 women participating in photovoice. Quantitative tools included Nepali versions of Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI) and a resilience scale. Results: In qualitative interviews after photovoice, women reported climate change adaptation and behavior change strategies including environmental knowledge-sharing, group mobilization, and increased hygiene practices. Women also reported beneficial effects for mental health. The mean BDI score prior to photovoice was 23.20 (SD=9.00) and two weeks after completion of photovoice, the mean BDI score was 7.40 (SD=7.93), paired t-test = 8.02, p<.001, n=10. Conclusion: Photovoice, as a participatory method, has potential to inform resources, adaptive strategies and potential interventions to for climate change and mental health.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is part of a University of Oxford John Fell funded collaborative project: Informality and the Media in Consumer Protection in Emerging Economies. This pilot project seeks to shed light upon consumer complaint behaviour through social media in emerging economies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter describes my experiences of conducting research on commercial sex in Belfast, Northern Ireland which was conducted as part of a larger British Academy – Leverhulme Trust funded study that examined the policing and legal regulation of commercial sex in Belfast (Northern Ireland) along with three other cities: Manchester (England), Berlin (Germany) and Prague (Czech Republic). This study provided the first empirical analysis of commercial sex in the jurisdiction and was instrumental in shedding light on prevalence rates for those involved in the industry as well as providing demographic information on the age, nationality and sexual orientation of sex workers along with the sector worked in, whether on-street or off-street. In the chapter I consider my role as a researcher and highlight some of the difficulties that I experienced conducting what was seen as controversial research in the politically, socially and culturally conservative context of Northern Ireland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vol. 1, no. 3-v. 2, no. 2, v. 4, no. 1 issued as Publications of the University of Pennsylvania.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.

The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.

The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).

The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.

The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.

In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.