972 resultados para Gravity and Quantization
Resumo:
Path-integral representations for a scalar particle propagator in non-Abelian external backgrounds are derived. To this aim, we generalize the procedure proposed by Gitman and Schvartsman of path-integral construction to any representation of SU(N) given in terms of antisymmetric generators. And for arbitrary representations of SU(N), we present an alternative construction by means of fermionic coherent states. From the path-integral representations we derive pseudoclassical actions for a scalar particle placed in non-Abelian backgrounds. These actions are classically analyzed and then quantized to prove their consistency.
Resumo:
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them theta-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing theta-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract theta-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as theta-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The theta-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.
Resumo:
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man`ko states and circular squeezed states. The relation between these states and the ""classical"" trajectories is investigated, and we present numerical explorations of some semiclassical quantities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A solution to a version of the Stieltjes moment. problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner`s ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincar, group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group I =GxG. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points xaG/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix ZaSpin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties.
Resumo:
By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.
Resumo:
The Mario Schenberg gravitational wave detector has started its commissioning phase at the Physics Institute of the University of Sao Paulo. We have collected almost 200 h of data from the instrument in order to check out its behavior and performance. We have also been developing a data acquisition system for it under a VXI System. Such a system is composed of an analog-to-digital converter and a GPS receiver for time synchronization. We have been building the software that controls and sets up the data acquisition. Here we present an overview of the Mario Schenberg detector and its data acquisition system, some results from the first commissioning run and solutions for some problems we have identified.
Resumo:
We investigate the analog of Landau quantization, for a neutral polarized particle in the presence of homogeneous electric and magnetic external fields, in the context of non-commutative quantum mechanics. This particle, possessing electric and magnetic dipole moments, interacts with the fields via the Aharonov-Casher and He-McKellar-Wilkens effects. For this model we obtain the Landau energy spectrum and the radial eigenfunctions of the non-commutative space coordinates and non-commutative phase space coordinates. Also we show that the case of non-commutative phase space can be treated as a special case of the usual non-commutative space coordinates.
Resumo:
We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.
Resumo:
This paper examines whether European Monetary Union (EMU) countries share fairly the effect of their membership in Eurozone (EZ) or whether are winners and losers in this ''Euro-game''. By using panel data of 27 European Union (EU) Member States for the period 2001-2012 in the context of a gravity model, we focus on estimating the Euro’s effect on bilateral trade and we detect whether this effect differs across the Member States of EZ. Two estimation methods are applied: Pooled OLS estimator and Fixed Effects estimator. The empirical results come to the conclusion that the individual country effects differ and are statistically significant, indicating that EMU’s effect on trade differs across the Member States of EZ. The overall effect of the Euro is statistically insignificant, regardless the estimation method, demonstrating that the common European currency may have no effect on bilateral trade.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population always travels to the nearest facility. Drezner and Drezner (2006, 2007) provide three arguments on why this assumption might be incorrect, and they introduce the extended the gravity p-median model to relax the assumption. We favour the gravity p-median model, but we note that in an applied setting, Drezner and Drezner’s arguments are incomplete. In this communication, we point at the existence of a fourth compelling argument for the gravity p-median model.
Resumo:
A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
Gravity was first performed at Strider Theatre, Colby College in Waterville, Maine. It was directed by the author with the following cast: STEVEN: Harold Withee PAMELA: Sue Larsen JEREMY: Jason Reifler IXXTOR: Amanda Starr MOTHER: Catherine C. Coyne BREIT: Scott W. Cole TONI: Laura Smishkiss