1000 resultados para Gauss beam


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of rapid thermal annealing on photoluminescence (PL) properties of InGaAs, InGaNAs, InGaAsSb, and InGaNAsSb quantum wells (QWs) grown by molecular-beam epitaxy was systematically investigated. Variations of PL intensity and full width at half maximum were recorded from the samples annealed at different conditions. The PL peak intensities of InGaAs and InGaNAs QWs initially increase and then decrease when the annealing temperature increased from 600 to 900 degrees C, but the drawing lines of InGaAsSb and InGaNAsSb take on an "M" shape. The enhancement of the PL intensity and the decrease of the full width at half maximum in our samples are likely due to the removal of defects and dislocations as well as the composition's homogenization. In the 800-900 degrees C high-temperature region, interdiffusion is likely the main factor influencing the PL intensity. In-N is easily formed during annealing which will prevent In out diffusion, so the largest blueshift was observed in InGaAsSb in the high-temperature region. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs was deposited by molecular beam epitaxy (MBE) on a GaAs substrate with an intentional temperature gradient from centre to edge. Two-dimensional (2D) to three-dimensional (3D) morphology evolution was found along the direction in which the substrate temperature was decreasing. Quantum dots (QDs) with density as low as similar to 8 x 10(6) cm(-2) were formed in some regions. We attribute the morphological evolution to the temperature-dependent desorption of deposited indium and the intermixing between deposited indium and gallium from the buffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The (Ga,Mn,N) samples were grown by the implantation of low-energy Mn ions into GaN/Al2O3 substrate at different elevated substrate temperatures with mass-analyzed low-energy dual ion beam deposition system. Auger electron spectroscopy depth profile of samples grown at different substrate temperatures indicates that the Mn ions reach deeper in samples with higher substrate temperatures. Clear X-ray diffraction peak from (Ga,Mn)N is observed in samples grown at the higher substrate temperature. It indicates that under optimized substrate temperature and annealing conditions the solid solution (Ga,Mn)N phase in samples was formed with the same lattice structure as GaN and different lattice constant. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new finite difference wide-angle beam propagation method is developed by introducing the least-squares expansion approximant in the propagator expansion. In this new method it is not necessary to select the reference index point because of the whole region approaching the lease-square expansion. This method avoids the problems induced by error selection of the reference index in the old methods based on Taylor or Pade expansion. Several typical structures are simulated by the new method and the results prove the validity of it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile-strained InAlAs layers have been grown by solid-source molecular beam epitaxy on as-grown Fe-doped semi-insulating (SI) InP substrates and undoped SI InP substrates obtained by annealing undoped conductive InP wafers (wafer-annealed InP). The effect of the two substrates on InAlAs epilayers and InAlAs/InP type II heterostructures has been studied by using a variety of characterization techniques. Our calculation data proved that the out-diffusion of Fe atoms in InP substrate may not take place due to their low diffusion, coefficient. Double-crystal X-ray diffraction measurements show that the lattice mismatch between the InAlAs layers and the two substrates is different, which is originated from their different Fe concentrations. Furthermore, photoluminescence results indicate that the type II heterostructure grown on the wafer-annealed InP substrate exhibits better optical and interface properties than that grown on the as-grown Fe-doped substrate. We have also given a physically coherent explanation on the basis of these investigations. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.3 mum emitting InAs/GaAs quantum dots (QDs) have been grown by molecular beam epitaxy and QD light emitting diodes (LEDs) have been fabricated. In the electroluminescence spectra of QD LEDs, two clear peaks corresponding to the ground state emission and the excited state emission are observed. It was found that the ground state emission could be achieved by increasing the number of QDs contained in the active region because of the state filling effect. This work demonstrates a way to control and tune the emitting wavelength of QD LEDs and lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic hydrogen assisted molecular beam epitaxy (MBE) is a novel type of epitaxial growth of nanostructures. The GaAs (311)A surface naturally forms one-dimensional step arrays by step bunching along the direction of (-233) and the space period is around 40nm. The step arrays extend over several mum without displacement. The InGaAs quantum wire arrays are grown on the step arrays as the basis. Our results may prompt further development of more uniform quantum wire and quantum dot arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth interruption (GI) effect on GaSb quantum dot formation grown on GaAs by molecular beam epitaxy was investigated. The structure characterization was performed by reflection high-energy electron diffraction (RHEED), along with photoluminescence measurements. It is found that the GI can significantly change the surface morphology of GaSb QDs. During the GI, the QDs structures can be smoothed out and turned into a 2D-like structure. The time duration of the GI required for the 3D/2D transition depends on the growth time of the GaSb layer. It increases with the increase of the growth time. Our results are explained by a combined effect of the stress relaxation process and surface exchange reactions during the GI. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon films with an open-ended structure were obtained by mass-selected ion-beam deposition technique at 800degreesC. Raman spectra show that these films are mainly sp(2)-bonded. In our case, threshold ion energy of 140 eV was found for the formation of such surface morphology. High deposition temperature and ion-beam current density are also responsible for the growth of this structure. Additionally, the growth mechanism of the carbon films is discussed in this article. It was found that the ions sputtered pits on the substrate in the initial stage play a key role in the tubular surface morphology. (C) 2002 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the characteristics of undoped GaN films, grown on either vicinal or nominal flat SiC (0001) substrates by molecular beam epitaxy, has been carried out using photoluminescence and Raman scattering techniques. The I I K photoluminescence spectra of the GaN film grown on the vicinal SiC (0001) substrate show a strong and sharp near-bandgap peak (full width at half maximum (FWHM) similar to 16 meV). This feature contrasts with that of the GaN film grown on the nominal flat SiC (0001) substrate where the I I K photoluminescence spectra exhibit the near-bandgap peak (FWHM similar to 25 meV) and the intensity is approximately seven times weaker than that of the vicinal film sample. The redshift of the near-bandgap peak associated with excitons bound to shallow donors is related to the stress caused by both the lattice mismatch and the thermal expansion coefficient difference between GaN and SiC substrates. The measured thermal activation energy of the shallow donor of 33.4 meV is determined by using an Arrhenius plot of the near-bandgap luminescence versus I IT from the slope of the graph at high temperature. The temperature dependence of the FWHM of the near-bandgap luminescence has also been studied. The Raman scattering measurements from the vicinal film reveal that the E-2 phonon peak is strengthened and the A(1)(LO) phonon peak is shifted towards the low-frequency side with enhanced intensity, in comparison to that from the nominal flat film, suggesting a reduction in the density of defects and a lower free carrier concentration in the vicinal GaN film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependence of photoluminescence (PL) from a-C:H film deposited by CH3+ ion beam has been performed and an anomalous behavior has been reported. A transition temperature at which the PL intensity, peak position and full width at the half maximum change sharply was observed. It is proposed that different structure units. at least three, are responsible for such behavior. Above the transition point. increasing temperature will lead to the dominance of non-radiative recombination process, which quenches the PL overall and preferentially the red part, Possible emission mechanisms have been discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.