996 resultados para Electrochemical activation
Resumo:
Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential.
Resumo:
Mitogen-activated protein kinases (MAPKs), including p38 and c-Jun N-terminal kinase (JNK), have a key role in T cell receptor (TCR)-induced gene transcription but their precise mechanism of activation is not well understood. The findings of two recent papers provide new insight into the activation of p38 and JNK by the membrane-associated guanylate kinase (MAGUK) family members Dlgh1 and Carma1, respectively, and show how distinct MAGUK proteins control specific aspects of TCR-mediated MAPK activation.
Resumo:
Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals" knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2.
Resumo:
The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-gamma (IFN-gamma)-producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X(7) purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1beta (IL-1beta). The priming of IFN-gamma-producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3(-/-)) or caspase-1-deficient (Casp-1(-/-)) mice unless exogenous IL-1beta is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7(-/-) or Nlrp3(-/-) or Casp1(-/-) hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.
Resumo:
We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.
Resumo:
Activation of cultured hepatic stellate cells correlated with an enhanced expression of proteins involved in uptake and storage of fatty acids (FA translocase CD36, Acyl-CoA synthetase 2) and retinol (cellular retinol binding protein type I, CRBP-I; lecithin:retinol acyltransferases, LRAT). The increased expression of CRBP-I and LRAT during hepatic stellate cells activation, both involved in retinol esterification, was in contrast with the simultaneous depletion of their typical lipid-vitamin A (vitA) reserves. Since hepatic stellate cells express high levels of peroxisome proliferator activated receptor beta (PPARbeta), which become further induced during transition into the activated phenotype, we investigated the potential role of PPARbeta in the regulation of these changes. Administration of L165041, a PPARbeta-specific agonist, further induced the expression of CD36, B-FABP, CRBP-I, and LRAT, whereas their expression was inhibited by antisense PPARbeta mRNA. PPARbeta-RXR dimers bound to CRBP-I promoter sequences. Our observations suggest that PPARbeta regulates the expression of these genes, and thus could play an important role in vitA storage. In vivo, we observed a striking association between the enhanced expression of PPARbeta and CRBP-I in activated myofibroblast-like hepatic stellate cells and the manifestation of vitA autofluorescent droplets in the fibrotic septa after injury with CCl4 or CCl4 in combination with retinol.
Resumo:
Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.
Resumo:
T cell receptor (TCR-CD3) triggering involves both receptor clustering and conformational changes at the cytoplasmic tails of the CD3 subunits. The mechanism by which TCRalphabeta ligand binding confers conformational changes to CD3 is unknown. By using well-defined ligands, we showed that induction of the conformational change requires both multivalent engagement and the mobility restriction of the TCR-CD3 imposed by the plasma membrane. The conformational change is elicited by cooperative rearrangements of two TCR-CD3 complexes and does not require accompanying changes in the structure of the TCRalphabeta ectodomains. This conformational change at CD3 reverts upon ligand dissociation and is required for T cell activation. Thus, our permissive geometry model provides a molecular mechanism that rationalizes how the information of ligand binding to TCRalphabeta is transmitted to the CD3 subunits and to the intracellular signaling machinery.
Resumo:
Objectives: We tested the effects of the three forms of basic calcium phosphate (BCP) crystals (octacalcium phosphate (OCP), carbonate-substituted apatite (CA) and hydroxyapatite (HA)) on monocytes and macrophages on IL-1β secretion. The requirement for the NALP3 inflammasome and TLR2 and TLR4 receptors in this acute response was analyzed.
Resumo:
Evidence from neuropsychological and activation studies (Clarke et al., 2oo0, Maeder et al., 2000) suggests that sound recognitionand localisation are processed by two anatomically and functionally distinct cortical networks. We report here on a case of a patientthat had an interruption of auditory information and we show: i) the effects of this interruption on cortical auditory processing; ii)the effect of the workload on activation pattern.A 36 year old man suffered from a small left mesencephalic haemotrhage, due to cavernous angioma; the let% inferior colliculuswas resected in the surgical approach of the vascular malformation. In the acute stage, the patient complained of auditoryhallucinations and of auditory loss in right ear, while tonal audiometry was normal. At 12 months, auditory recognition, auditorylocalisation (assessed by lTD and IID cues) and auditory motion perception were normal (Clarke et al., 2000), while verbal dichoticlistening was deficient on the right side.Sound recognition and sound localisation activation patterns were investigated with fMRI, using a passive and an activeparadigm. In normal subjects, distinct cortical networks were involved in sound recognition and localisation, both in passive andactive paradigm (Maeder et al., 2OOOa, 2000b).Passive listening of environmental and spatial stimuli as compared to rest strongly activated right auditory cortex, but failed toactivate left primary auditory cortex. The specialised networks for sound recognition and localisation could not be visual&d onthe right and only minimally on the left convexity. A very different activation pattern was obtained in the active condition wherea motor response was required. Workload not only increased the activation of the right auditory cortex, but also allowed theactivation of the left primary auditory cortex. The specialised networks for sound recognition and localisation were almostcompletely present in both hemispheres.These results show that increasing the workload can i) help to recruit cortical region in the auditory deafferented hemisphere;and ii) lead to processing auditory information within specific cortical networks.References:Clarke et al. (2000). Neuropsychologia 38: 797-807.Mae.der et al. (2OOOa), Neuroimage 11: S52.Maeder et al. (2OOOb), Neuroimage 11: S33
Resumo:
After antigen driven activationnaïve CD8 T cells develop intocytolytic effector cells and subsequentlyinto memory cells. The molecularinteractions orchestrating Tcell activation are complex and we sofar have a limited understanding howindividual signals impact the Tcell response.Using OT-1 TCR transgeniccells and Listeria monocytogenesstrains expressing a set of altered peptideligands (APL) for the OT-1 TCRwe have recently studied how thelevel of TCR stimulation impacts theT cell response in vivo. We therebyobserved that even very low levels ofTCR stimulation are sufficient forfunctional effector and memoryT celldifferentiation. In order to addresshow much further the level of TCRstimulation can be reduced until the Tcells do not become activated anymore,we generated additional OT-1APL expressing Listeria strains. TheAPLused in our present study cover arange of potency down to the level ofpositive selection. Using all our APLListeria strains we can demonstratethat the threshold of peripheral T cellactivation is above the level of positiveselection but far below the levelthat is thought to be required for negativeselection. Furthermore, we characterizedthe thresholds of activatingmemory T cells and found them intrinsicallyto be very similar to thoseof naïve T cells. However, we observedthat T cell competition at thelevel of antigen presenting cells criticallyraises the activation threshold ofmemory CD8 T cells. Taken togetherour data indicate that the threshold foractivating T cells critically dependson the context and the environment inwhich T cells respond to antigen.
Resumo:
The main objective of this study is to determine the effectiveness of the Electrochemical Chloride Extraction (ECE) technique on a bridge deck with very high concentrations of chloride. This ECE technique was used during the summer of 2003 to reverse the effects of corrosion, which had occurred in the reinforcing steel embedded in the pedestrian bridge deck over Highway 6, along Iowa Avenue, in Iowa City, Iowa, USA. First, the half cell potential was measured to determine the existing corrosion level in the field. The half-cell potential values were in the indecisive range of corrosion (between -200 mV and -350 mV). The ECE technique was then applied to remove the chloride from the bridge deck. The chloride content in the deck was significantly reduced from 25 lb/cy to 4.96 lb/cy in 8 weeks. Concrete cores obtained from the deck were measured for their compressive strengths and there was no reduction in strength due to the ECE technique. Laboratory tests were also performed to demonstrate the effectiveness of the ECE process. In order to simulate the corrosion in the bridge deck, two reinforced slabs and 12 reinforced beams were prepared. First, the half-cell potentials were measured from the test specimens and they all ranged below -200 mV. Upon introduction of 3% salt solution, the potential reached up to -500 mV. This potential was maintained while a salt solution was being added for six months. The ECE technique was then applied to the test specimens in order to remove the chloride from them. Half-cell potential was measured to determine if the ECE technique can effectively reduce the level of corrosion.