984 resultados para Conductivity, electrical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to human activity, large amounts of organic residue are generated daily. Therefore, an adequate use in agricultural activities requires the characterization of the main properties. The chemical and physical characterization is important when planning the use and management of organic residue. In this study, chemical and physical properties of charcoal, coffee husk, pine-bark, cattle manure, chicken manure, coconut fiber, sewage sludge, peat, and vermiculite were determined. The following properties were analyzed: N-NH4+, N-N0(3)-, and total concentrations of N, P, S, K, Ca, Mg, Mn, Zn, Cu, and B, as well as pH, Electrical Conductivity (EC) and bulk density. Coffee husk, sewage sludge, chicken manure and cattle manure were generally richer in nutrients. The EC values of these residues were also the highest (0.08 - 40.6 dS m-1). Peat and sewage sludge had the highest bulky density. Sodium contents varied from 0 to 4.75 g kg-1, with the highest levels in chicken manure, cattle manure and sewage sludge. Great care must be taken when establishing proportions of organic residues in the production of substrates with coffee husk, cattle or chicken manure or sewage sludge in the calculation of the applied fertilizer quantity in crop fertilization programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity levels in soils of the Outer Coastal Plain of Rio Grande do Sul, Brazil, can be high, due to excess of Na in the irrigation water, evapotranspiration and soil development from marine sediments. The cultivation of irrigated rice could be an alternative, since ion uptake as well as leaching by the establishment of a water layer could mitigate the effects of soil salinity. This study aimed to evaluate the dynamics of basic cations in the solution of Albaqualf soils with different salinity levels growing irrigated rice. The plow layer contained exchangeable Na percentages (ESP) of 5.6, 9.0, 21.2 and 32.7 %. The plant stand, dry matter, Na, K and Ca + Mg uptake at full flowering and grain yield were evaluated. The levels of Na, K, Ca + Mg and electrical conductivity (EC) in the soil solution were also measured weekly during the rice cycle at four soil depths, in the water layer and irrigation water. The Na, K and Ca + Mg uptake by rice at full flowering was used to estimate ion depletion from the layer under root influence. Soil salinity induced a reduction in the rice stand, especially in the soil with ESP of 32.7 %, resulting in lower cation uptake and very low yield at that site. As observed in the water layer and irrigation water, the Na, K, Ca + Mg and EC levels in the soil solution decreased with time at depths of 5, 10 and 20 cm, regardless of the original soil salinity, showing that cation dynamics in the plow layer was determined by leaching and root uptake, rather than by the effect of evapoconcentration of basic cations in the soil surface layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptosols and Regosols are soils with a series of restrictions for use, mainly related to the effective depth, which have been poorly studied in Brazil. These soils, when derived from sedimentary rocks should be treated with particular care to avoid environmental damage such as aquifer contamination. The purpose of this study was to verify the behavior of hydraulic conductivity and water retention capacity in profiles of Leptosols and Regosols derived from sandstone of the Caturrita formation in Rio Grande do Sul state. The morphology, particle size distribution, porosity, soil density (Ds), saturated hydraulic conductivity (Ks), basic water infiltration in the field (BI) and water retention were determined in soil and saprolite samples of six soil profiles. High Ds, low macroporosity and high microporosity were observed in the profiles, resulting in a low Ks and BI, even under conditions of sandy texture and a highly fractured saprolite layer. The variation coefficients of data of Ks and BI were high among the studied profiles and between replications of a same profile. Water retention of the studied soils was higher in Cr layers than in the A horizons and the volume of plant-available water greater and variable among A horizons and Cr layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Korkealla virranvoimakkuudella tainnutettujen broilereiden rintafileen irroitushetken vaikutus lihaksen leikkausvoiman vastukseen, pH:hon, keittohävikkiin ja väriin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One way of classifying water quality is by means of indices, in which a series of parameters analyzed are joined a single value, facilitating the interpretation of extensive lists of variables or indicators, underlying the classification of water quality. The objective of this study was to develop a statistically based index to classify water according to the Irrigation Water Quality Index (IWQI), to evaluate the ionic composition of water for use in irrigation and classify it by its source. For this purpose, the database generated during the Technology Generation and Adaptation (GAT) program was used, in which, as of 1988, water samples were collected monthly from water sources in the states of Paraíba, Rio Grande do Norte and Ceará. To evaluate water quality, the electrical conductivity (EC) of irrigation water was taken as a reference, with values corresponding to 0.7 dS m-1. The chemical variables used in this study were: pH, EC, Ca, Mg, Na, K, Cl, HCO3, CO3, and SO4. The data of all characteristics evaluated were standardized and data normality was confirmed by Lilliefors test. Then the irrigation water quality index was determined by an equation that relates the standardized value of the variable with the number of characteristics evaluated. Thus, the IWQI was classified based on indices, considering normal distribution. Finally, these indices were subjected to regression analysis. The method proposed for the IWQI allowed a satisfactory classification of the irrigation water quality, being able to estimate it as a function of EC for the three water sources. Variation in the ionic composition was observed among the three sources and within a single source. Although the water quality differed, it was good in most cases, with the classification IWQI II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An instrument designed to measure thermal conductivity of consolidated rocks, dry or saturated, using a transient method is presented. The instrument measures relative values of the thermal conductivity, and it needs calibration to obtain absolute values. The device can be used as heat pulse line source and as continuous heat line source. Two parameters to determine thermal conductivity are proposed: TMAX, in heat pulse line source, and SLOPE, in continuous heat line source. Its performance is better, and the operation simpler, in heat pulse line-source mode with a measuring time of 170 s and a reproducibility better than 2.5%. The sample preparation is very simple on both modes. The performance has been tested with a set of ten rocks with thermal conductivity values between 1.4 and 5.2 W m¿1 K¿1 which covers the usual range for consolidated rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen content is a very important factor influencing the electrical properties of YBa2Cu3Oy. In this work the electrical properties of laser deposited YBa2Cu3Oy thin films on LaAlO3(100), in the whole range 6 y 7, are studied. An electrical network model, which randomly assigns oxygen contents and R(T) characteristics to the different elements in the circuit according to an arbitrary distribution, is used to analyze several features in the measured R(T) characteristics as a function of oxygen homogeneity. The model takes into account both short-range and long-range oxygen inhomogeneities. Good agreement between estimated oxygen contents from x-ray diffraction data in our samples and the average oxygen contents used to reproduce their R(T) characteristics is found. The model points out that oxygen homogeneity is very important in order to get the best and reproducible properties, and for conduction and superconductivity analysis through the shape or derivatives of R(T) characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a systematic study of the low-temperature electrical conductivity in a series of SrRuO3 epitaxial thin films. At relatively high temperature the films display the conventional metallic behavior. However, a well-defined resistivity minimum appears at low temperature. This temperature dependence can be well described in a weak localization scenario: the resistivity minimum arising from the competition of electronic self-interference effects and the normal metallic character. By appropriate selection of the film growth conditions, we have been able to modify the mean-free path of itinerant carriers and thus to tune the relative strength of the quantum effects. We show that data can be quantitatively described by available theoretical models.