941 resultados para Computer-assisted image analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho aborda-se o desenvolvimento da carroçaria do Veículo Eléctrico Ecológico – VEECO recorrendo a tecnologias assistidas por computador. Devido à impossibilidade de abranger toda a temática das tecnologias assistidas por computador, associadas ao desenvolvimento de uma carroçaria automóvel, o foco deste trabalho assenta no processo de obtenção de um modelo digital válido e no estudo do desempenho aerodinâmico da carroçaria. A existência de um modelo digital válido é a base de qualquer processo de desenvolvimento associado a tecnologias assistidas por computador. Neste sentido, numa primeira etapa, foram aplicadas e desenvolvidas técnicas e metodologias que permitem o desenvolvimento de uma carroçaria desde a sua fase de “design” até à obtenção de um modelo digital CAD. Estas abrangem a conversão e importação de dados, a realização de engenharia inversa, a construção/reconstrução CAD em CATIA V5 e a preparação/correcção de modelos CAD para a análise numérica. Numa segunda etapa realizou-se o estudo da aerodinâmica exterior da carroçaria, recorrendo à ferramenta de análise computacional de fluidos (CFD) Flow Simulation da CosmosFloworks integrado no programa SolidWorks 2010. Associado à temática do estudo aerodinâmico e devido à elevada importância da validação dos resultados numéricos por meio de dados experimentais, foi realizado o estudo de análise dimensional que permite a realização de ensaios experimentais à escala, bem como a análise dos resultados experimentais obtidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ao longo dos tempos foi possível constatar que uma grande parte do tempo dos professores é gasta na componente de avaliação. Por esse facto, há já algumas décadas que a correcção automática de texto livre é alvo de investigação. Sendo a correcção de exercícios efectuada pelo computador permite que o professor dedique o seu tempo em tarefas que melhorem a aprendizagem dos alunos. Para além disso, cada vez mais as novas tecnologias permitem o uso de ferramentas com bastante utilidade no ensino, pois para além de facilitarem a exposição do conhecimento também permitem uma maior retenção da informação. Logo, associar ferramentas de gestão de sala de aula à correcção automática de respostas de texto livre é um desafio bastante interessante. O objectivo desta dissertação foi a realização de um estudo relativamente à área de avaliação assistida por computador em que este trabalho se insere. Inicialmente, foram analisados alguns correctores ortográficos para seleccionar aquele que seria integrado no módulo proposto. De seguida, foram estudadas as técnicas mais relevantes e as ferramentas que mais se enquadram no âmbito deste trabalho. Neste contexto, a ideia foi partir da existência de uma ferramenta de gestão de sala de aula e desenvolver um módulo para a correcção de exercícios. A aplicação UNI_NET-Classroom, que foi a ferramenta para a qual o módulo foi desenvolvido, já continha um componente de gestão de exercícios que apenas efectuava a correcção para as respostas de escolha múltipla. Com este trabalho pretendeu-se acrescentar mais uma funcionalidade a esse componente, cujo intuito é dar apoio ao professor através da correcção de exercícios e sugestão da cotação a atribuir. Por último, foram realizadas várias experiências sobre o módulo desenvolvido, de forma a ser possível retirar algumas conclusões para o presente trabalho. A conclusão mais importante foi que as ferramentas de correcção automática são uma mais-valia para os professores e escolas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Automação e Electrónica Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTED2010, the 4th International Technology, Education and Development Conference was held in Valencia (Spain), on March 8, 9 and 10, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of visually exploring underwater environments is still a complex problem. Underwater vision systems require complementary means of sensor information to help overcome water disturbances. This work proposes the development of calibration methods for a structured light based system consisting on a camera and a laser with a line beam. Two different calibration procedures that require only two images from different viewpoints were developed and tested in dry and underwater environments. Results obtained show, an accurate calibration for the camera/projector pair with errors close to 1 mm even in the presence of a small stereos baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, several sensors and mechanisms are available to estimate a mobile robot trajectory and location with respect to its surroundings. Usually absolute positioning mechanisms are the most accurate, but they also are the most expensive ones, and require pre installed equipment in the environment. Therefore, a system capable of measuring its motion and location within the environment (relative positioning) has been a research goal since the beginning of autonomous vehicles. With the increasing of the computational performance, computer vision has become faster and, therefore, became possible to incorporate it in a mobile robot. In visual odometry feature based approaches, the model estimation requires absence of feature association outliers for an accurate motion. Outliers rejection is a delicate process considering there is always a trade-off between speed and reliability of the system. This dissertation proposes an indoor 2D position system using Visual Odometry. The mobile robot has a camera pointed to the ceiling, for image analysis. As requirements, the ceiling and the oor (where the robot moves) must be planes. In the literature, RANSAC is a widely used method for outlier rejection. However, it might be slow in critical circumstances. Therefore, it is proposed a new algorithm that accelerates RANSAC, maintaining its reliability. The algorithm, called FMBF, consists on comparing image texture patterns between pictures, preserving the most similar ones. There are several types of comparisons, with different computational cost and reliability. FMBF manages those comparisons in order to optimize the trade-off between speed and reliability.