Signal Subspace Identification in Hyperspectral Linear Mixtures


Autoria(s): Nascimento, José M. P.; Bioucas-Dias, José M.
Data(s)

05/06/2014

05/06/2014

01/06/2005

Resumo

Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II

Hyperspectral applications in remote sensing are often focused on determining the so-called spectral signatures, i.e., the reflectances of materials present in the scene (endmembers) and the corresponding abundance fractions at each pixel in a spatial area of interest. The determination of the number of endmembers in a scene without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper proposes a new mean squared error approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense.

Identificador

NASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Signal Subspace Identification in Hyperspectral Linear Mixtures. Pattern Recognition and Image Analysis. Vol. 3523, nr. 2 (2005), p. 207-214

978-3-540-26154-4

978-3-540-32238-2

10.1007/11492542_26

http://hdl.handle.net/10400.21/3612

Idioma(s)

eng

Publicador

Springer Berlin Heidelberg

Relação

Lecture Notes in Computer Science;

http://link.springer.com/chapter/10.1007%2F11492542_26

Direitos

restrictedAccess

Palavras-Chave #Pattern Recognition #Image Science #Hyperspectral
Tipo

bookPart