982 resultados para Biology, Bioinformatics|Computer Science
Resumo:
This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.
Resumo:
In this paper we study the existence of mild solutions for a class of first order abstract partial neutral differential equations with state-dependent delay. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We study the existence of mild solutions for a class of impulsive neutral functional differential equation defined on the whole real axis. Some concrete applications to ordinary and partial neutral differential equations with impulses are considered. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
Resumo:
We introduce biomimetic in silico devices, and means for validation along with methods for testing and refining them. The devices are constructed from adaptable software components designed to map logically to biological components at multiple levels of resolution. In this report we focus on the liver; the goal is to validate components that mimic features of the lobule (the hepatic primary functional unit) and dynamic aspects of liver behavior, structure, and function. An assembly of lobule-mimetic devices represents an in silico liver. We validate against outflow profiles for sucrose administered as a bolus to isolated, perfused rat livers. Acceptable in silico profiles are experimentally indistinguishable from those of the in situ referent. This new technology is intended to provide powerful Dew tools for challenging our understanding of how biological functional units function in vivo.
Resumo:
This paper seeks to understand how software systems and organisations co-evolve in practice and how order emerges in the overall environment. Using a metaphor of timetable as a commons, we analyse the introduction of a novel academic scheduling system to demonstrate how Complex Adaptive Systems theory provides insight into the adaptive behaviour of the various actors and how their action is both a response to and a driver of co-evolution within the engagement.
Resumo:
Geospatial clustering must be designed in such a way that it takes into account the special features of geoinformation and the peculiar nature of geographical environments in order to successfully derive geospatially interesting global concentrations and localized excesses. This paper examines families of geospaital clustering recently proposed in the data mining community and identifies several features and issues especially important to geospatial clustering in data-rich environments.
Resumo:
Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Extended gcd computation is interesting itself. It also plays a fundamental role in other calculations. We present a new algorithm for solving the extended gcd problem. This algorithm has a particularly simple description and is practical. It also provides refined bounds on the size of the multipliers obtained.
Resumo:
Qu-Prolog is an extension of Prolog which performs meta-level computations over object languages, such as predicate calculi and lambda-calculi, which have object-level variables, and quantifier or binding symbols creating local scopes for those variables. As in Prolog, the instantiable (meta-level) variables of Qu-Prolog range over object-level terms, and in addition other Qu-Prolog syntax denotes the various components of the object-level syntax, including object-level variables. Further, the meta-level operation of substitution into object-level terms is directly represented by appropriate Qu-Prolog syntax. Again as in Prolog, the driving mechanism in Qu-Prolog computation is a form of unification, but this is substantially more complex than for Prolog because of Qu-Prolog's greater generality, and especially because substitution operations are evaluated during unification. In this paper, the Qu-Prolog unification algorithm is specified, formalised and proved correct. Further, the analysis of the algorithm is carried out in a frame-work which straightforwardly allows the 'completeness' of the algorithm to be proved: though fully explicit answers to unification problems are not always provided, no information is lost in the unification process.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.