Expectation Propagation with Factorizing Distributions: A Gaussian Approximation and Performance Results for Simple Models


Autoria(s): RIBEIRO, Fabiano; OPPER, Manfred
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

19/10/2012

19/10/2012

2011

Resumo

We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.

CNPq Conselho Nacional de Desenvolvimen to Cientifico e Tecnologico from Brazil[151057/2009-5]

DAAD (Deutscher Akademischer Austausch Dienst) from Germany

Identificador

NEURAL COMPUTATION, v.23, n.4, p.1047-1069, 2011

0899-7667

http://producao.usp.br/handle/BDPI/20956

10.1162/NECO_a_00104

http://dx.doi.org/10.1162/NECO_a_00104

Idioma(s)

eng

Publicador

MIT PRESS

Relação

Neural Computation

Direitos

restrictedAccess

Copyright MIT PRESS

Palavras-Chave #INFERENCE #Computer Science, Artificial Intelligence #Neurosciences
Tipo

article

original article

publishedVersion