Expectation Propagation with Factorizing Distributions: A Gaussian Approximation and Performance Results for Simple Models
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
19/10/2012
19/10/2012
2011
|
Resumo |
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution. CNPq Conselho Nacional de Desenvolvimen to Cientifico e Tecnologico from Brazil[151057/2009-5] DAAD (Deutscher Akademischer Austausch Dienst) from Germany |
Identificador |
NEURAL COMPUTATION, v.23, n.4, p.1047-1069, 2011 0899-7667 http://producao.usp.br/handle/BDPI/20956 10.1162/NECO_a_00104 |
Idioma(s) |
eng |
Publicador |
MIT PRESS |
Relação |
Neural Computation |
Direitos |
restrictedAccess Copyright MIT PRESS |
Palavras-Chave | #INFERENCE #Computer Science, Artificial Intelligence #Neurosciences |
Tipo |
article original article publishedVersion |