969 resultados para BRAIN TUMOR
Resumo:
Microcephalin gene is one of the major players in regulating human brain development. It was reported that truncated mutations in this gene can cause primary microcephaly in humans with a brain size comparable with that of early hominids. We studied the m
Resumo:
Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during huma
Resumo:
The difference in cognitive skills between humans and nonhuman primates is one of the major characters that define our own species. It was previously hypothesized that this divergence might be attributable to genetic differences at gene expression level,
Resumo:
To understand the genetic basis that underlies the phenotypic divergence between human and non-human primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identity genes
Resumo:
The tumor suppressor p53 is a master sensor of stress. Two human-specific polymorphisms, p53 codon 72 and MDM2 SNP309, influence the activities of p53. There is a tight association between cold winter temperature and p53 Arg72 and between low UV intensity
Resumo:
To investigate whether aberrant hypermethylation in plasma DNA could be used as diagnosis makers for hepatocellular carcinoma (HCC), we performed methylation-specific PCR (MSP) to check the methylation status of five tumor associated genes in 36 cases of
Resumo:
Physiological functions of human genes may be studied by gene-knockout experiments in model organisms such as the mouse. This strategy relies on the existence of one-to-one gene orthology between the human and mouse. When lineage-specific gene duplication occurs and paralogous genes share a certain degree of functional redundancy, knockout mice may not provide accurate functional information on human genes. Angiogenin is a small protein that stimulates blood-vessel growth and promotes tumor development. Humans and related primates only have one angiogenin gene, while mice have three paralogous genes. This makes it difficult to generate angiogenin-knockout mice and even more difficult to interpret the genotype-phenotype relation from such animals should they be generated. We here show that in the douc langur (Pygathrix nemaeus), an Asian leaf-eating colobine monkey, the single-copy angiogenin gene has a one-nucleotide deletion in the sixth codon of the mature peptide, generating a premature stop codon. This nucleotide deletion is found in five unrelated individuals sequenced, and therefore is likely to have been fixed in the species. Five colobine species that are closely related to the douc langur have intact angiogenin genes, suggesting that the pseudogenization event was recent and unique to the douc langur lineage. This natural knockout experiment suggests that primate angiogenin is dispensable even in the wild. Further physiological studies of douc largurs may offer additional information on the role of this cancer-related gene in normal physiology of primates, including humans. Our findings also provide a strong case for the importance of evolutionary analysis in biomedical studies of gene functions. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its ac
Resumo:
Humans have exceptional abilities to learn new skills, manipulate tools and objects, and interact with our environment. In order to be successful at these tasks, our brain has developed learning mechanisms to deal with and compensate for the constantly changing dynamics of the world. If this mechanism or mechanisms can be understood from a computational point of view, then they can also be used to drive the adaptability and learning of robots. In this paper, we will present a new technique for examining changes in the feedforward motor command due to adaptation. This technique can then be utilized for examining motor adaptation in humans and determining a computational algorithm which explains motor learning. © 2007.
Resumo:
Humans have exceptional abilities to learn new skills, manipulate tools and objects, and interact with our environment. In order to be successful at these tasks, our brain has become exceptionally well adapted to learning to deal not only with the complex dynamics of our own limbs but also with novel dynamics in the external world. While learning of these dynamics includes learning the complex time-varying forces at the end of limbs through the updating of internal models, it must also include learning the appropriate mechanical impedance in order to stabilize both the limb and any objects contacted in the environment. This article reviews the field of human learning by examining recent experimental evidence about adaptation to novel unstable dynamics and explores how this knowledge about the brain and neuro-muscular system can expand the learning capabilities of robotics and prosthetics. © 2006.